

Welcome to ESM Tools’s documentation!

Contents:

	Introduction

	Ten Steps to a Running Model

	Installation
	Downloading

	Accessing components in DKRZ server

	ESM Tools
	Before you continue

	Installing

	Configuration

	Uninstall ESM-tools

	Transitioning from the Shell Version
	ESM-Master

	ESM-Environment

	ESM-Runscripts

	Functions –> Configs + Python Packages

	Namelists

	YAML File Syntax
	What Is YAML?

	ESM-Tools Extended YAML Syntax

	YAML File Hierarchy
	Hierarchy of YAML configuration files

	ESM-Tools Variables
	Tool-Specific Elements/Variables

	Supported Models
	AMIP

	DEBM

	ECHAM

	ESM_INTERFACE

	FESOM

	FESOM_MESH_PART

	HDMODEL

	ICON

	JSBACH

	MPIOM

	NEMO

	NEMOBASEMODEL

	OASIS3MCT

	OpenIFS

	PISM

	RECOM

	RNFMAP

	SAMPLE

	SCOPE

	TUX

	VILMA

	XIOS

	YAC

	YAXT

	ESM Master
	Usage: esm_master

	Configuring esm-master for Compile-Time Overrides

	ESM-Versions
	Usage

	Getting ESM-Versions

	ESM Runscripts
	Usage

	Arguments

	Running a Model/Setup

	Job Phases

	Running only part of a job

	Experiment Directory Structure

	Cleanup of run_ directories

	Debugging an Experiment

	Setting the file movement method for filetypes in the runscript

	ESM MOTD

	Cookbook
	Change/Add Flags to the sbatch Call

	Applying a temporary disturbance to ECHAM to overcome numeric instability (lookup table overflows of various kinds)

	Changing Namelist Entries from the Runscript

	How to setup runscripts for different kind of experiments

	Implement a New Model

	Implement a New Coupled Setup

	Include a New Forcing/Input File

	Exclude a Forcing/Input File

	Using your own namelist

	How to branch-off FESOM from old spinup restart files

	Frequently Asked Questions
	Installation

	ESM Runscripts

	ESM Master

	Frequent Errors

	Python Packages
	esm_tools.git

	esm_master.git

	esm_runscripts.git

	esm_parser.git

	esm_calendar.git

	ESM Tools Code Documentation
	esm_archiving package

	esm_archiving.database package

	esm_archiving.external package

	esm_calendar package

	esm_database package

	esm_environment package

	esm_master package

	esm_parser package

	esm_profile package

	esm_rcfile package

	esm_runscripts package

	esm_version_checker package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Deploying

	Credits
	Development Lead

	Project Management

	Contributors

	Beta Testers

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This is the user manual for the esm-tools. To contribute to this document, please contact the authors for feedback.

The esm-tools are a collection of scripts to download, compile, configure different simulation models for the Earth system, such as atmosphere, ocean, geo-biochemistry, hydrology, sea-ice and ice-sheet models, as well as coupled Earth System Models (ESMs). They include functionality to write unified runscripts to carry out model simulations for different model setups (standalone and ESMs) on different HPC systems.

Ten Steps to a Running Model

	Make sure you have git installed with version newer than 2.13, that the python version is 3.6 or later (see Before you continue), and that pip is up-to-date (pip install -U pip). Also make sure that the location to which the python binaries will be installed (which is ~/.local/bin by default) is in your PATH. For that purpose, add the following lines to one of your login or profile files, i.e. ~/.bash_profile, ~/.bashrc, ~/.profile, etc.:

$ export PATH=$PATH:~/.local/bin
$ export LC_ALL=en_US.UTF-8
$ export LANG=en_US.UTF-8

	Make sure you have a GitHub account and check our GitHub repository (https://github.com/esm-tools).

	Download the git repository esm_tools.git from GitHub:

$ git clone https://github.com/esm-tools/esm_tools.git

	In the new folder esm_tools, run the installer:

$ cd esm_tools
$./install.sh

This should install the python packages of ESM-Tools. If you wonder where they end up, take a look at ~/.local/lib/python%versionnumber%/site-packages.
Also, a new file called ~/.esmtoolsrc is added to your HOME, which contains some very few details about the installation.

	Run esm_master once and answer the questions to setup the tool completely. You should see a long list of available targets if everything works. Note that you will need to manually edit the file ~/.esmtoolsrc, if you mistakenly spelled any of the user names required for accessing the repositories, or you selected the default user name (anonymous).

	Go to the toplevel folder into which you want to install your model codes, and run esm_master install-, followed by the name and the version of the model you want to install. As an example, if we want to install FESOM2:

$ mkdir ../model_codes
$ cd ../model_codes
$ esm_master install-fesom-2.0

You will be asked for your password to the repository of the model you are trying to install. If you don’t have access to that repo yet, esm_master will not be able to install the model; you will have to contact the model developers to be granted access (Supported Models). Feel free to contact us if you don’t know who the model developers are.

Note

An error may occur in case you have performed a fresh install of` ESM-Tools` version 5 after having version 4 installed. In this known error, esm_master crashes with a FileNotFoundError with regard to esm_master.yaml. Try to fix this by updating your ~/.esmtoolsrc, removing lines that define paths for runscripts, namelists, and functions. Then try again (RUNSCRIPT_PATH, NAMELIST_PATH and FUNCTION_PATH).

	Check if the installation process worked; if so, you should find the model executable in the subfolder bin of the model folder. E.g.:

$ ls fesom-2.0/bin

	Go back to the esm_tools folder, and pick a sample runscript from the runscripts subfolder. These examples are very short and can be easily adapted. Pick one that is for the model you want to run, and maybe already adapted to the HPC system you are working on. Make sure to adapt the paths to your personal settings, e.g. model_dir, base_dir etc.:

$ cd ../esm_tools/runscripts/fesom2
$ (your_favourite_editor) fesom2-ollie-initial-monthly.yaml

Notice that the examples exist with the endings .run and .yaml. It doesn’t matter what you pick. The files ending in .run are looking more like conventional shell scripts that you might be better used to, the .yaml-files are written as yaml configuration files, which makes things much nicer and more elegant to write down. We strongly encourage you to give the yaml-version a try.

	Run a check of the simulation to see if all needed files are found, and everything works as expected:

$ esm_runscripts fesom2-ollie-initial-monthly.yaml -e my_first_test -c

The command line option -c specifies that this is a check run, which means that all the preparations, file system operations, … are performed as for a normal simulation, but then the simulation will stop before actually submitting itself to the compute nodes and executing the experiment. You will see a ton of output on the screen that you should check for correctness before continuing, this includes:

	information about missing files that could not be copied to the experiment folder

	namelists that will be used during the run

	the miniature .sad script that is submitted the compute nodes, which also shows the environment that will be used

You can also check directly if the job folder looks like expected. You can find it at $BASE_DIR/$EXP_ID/run_xxxxxxxxxxx, where BASE_DIR was set in your runscript, EXP_ID (probably) on the command line, and run_xxxxxxxxxxxxx stands for the first chunk of your chain job. You can check the work folder, which is located at $BASE_DIR/$EXP_ID/run_xxxxxxxxxxxx/work, as well as the complete configuration used to generate the simulation, located at $BASE_DIR/$EXP_ID/run_xxxxxxxxxxxx/log.

	Run the experiment:

$ esm_runscripts fesom2-ollie-initial-monthly.yaml -e my_first_test

That should really be it. Good luck!

Installation

Downloading

esm_tools is hosted on https://github.com/esm-tools. To get access to the software you need to be able to log into GitHub.

Then you can start by cloning the repository esm_tools.git:

$ git clone https://github.com/esm-tools/esm_tools.git

This gives you a collection of yaml configuration files containing all the information on models, coupled setups, machines, etc. in the subfolder config, default namelists in the folder namelists, example runscripts for a large number of models on different HPC systems in subfolder runscripts, and this documention in docs. Also you will find the installer install.sh used to install the python packages.

Accessing components in DKRZ server

Some of the esm_tools components are hosted in the gitlab.dkrz.de servers. To be able to reach these components you will need:

	A DKRZ account (https://www.dkrz.de/up/my-dkrz/getting-started/account/DKRZ-user-account).

	Become a member of the group esm_tools. Either look for the group and request membership, or directly contact dirk.barbi@awi.de.

	Request access from the corresponding author of the component. Feel free to contact us if you don’t know who the model developers are or check the Supported Models section.

ESM Tools

[image: _images/41d461bc2fe4bb8683b18ae7e08023ab43e46534.svg]For our complete documentation, please check https://esm-tools.readthedocs.io/en/latest/index.html.

Before you continue

You will need python 3 (possibly version 3.6 or newer), a version of git that is not ancient (everything newer than 2.10 should be good), and up-to-date pip (pip install -U pip) to install the esm_tools. That means that on the supported machines, you could for example use the following settings:

ollie.awi.de:

$ module load git
$ module load python3

mistral.dkrz.de:

$ module load git
$ module unload netcdf_c
$ module load anaconda3

glogin.hlrn.de / blogin.hlrn.de:

$ module load git
$ module load anaconda3

juwels.fz-juelich.de:

$ module load git
$ module load Python-3.6.8

aleph:

$ module load git
$ module load python

Note that some machines might raise an error conflict netcdf_c when loading anaconda3. In that case you will need to swap netcdf_c with anaconda3:

$ module unload netcdf_c
$ module load anaconda3

Installing

	First, make sure you add the following lines to one of your login or profile files, i.e. ~/.bash_profile, ~/.bashrc, ~/.profile, etc.:

$ export PATH=$PATH:~/.local/bin
$ export LC_ALL=en_US.UTF-8
$ export LANG=en_US.UTF-8

	Inside the same login or profile file, add also the module commands necessary for the HPC system you are using (find the lines in the section above).

	You can choose to source now your login or profile file, so that the module and export commands are run (e.g. $ source ~/.bash_profile).

	To use the new version of the ESM-Tools, now rewritten in Python, clone this repository:

$ git clone https://github.com/esm-tools/esm_tools.git

	Then, run the install.sh:

$./install.sh

You should now have the command line tools esm_master and esm_runscripts, which replace the old version.

You may have to add the installation path to your PATH variable:

$ export PATH=~/.local/bin:$PATH

Configuration

If you have installed esm_tools you need to configure it before the first use to setup the hidden file $HOME/.esmtoolsrc correctly. This configuration will set required user information that are needed by both esm_master and esm_runscripts to work correctly. Such information are your user accounts on the different software repositories, your account on the machines you want to compute on, and some basic settings for the esm_runscripts.

To configure esm_master you should run the executable:

$ esm_master

Running it for the first time after installation, you will be asked to type in your user settings. This interactive configuration includes the following steps:

$ Please enter your username for gitlab.dkrz.de (default: anonymous)
$ Please enter your username for swrepo1.awi.de (default: anonymous)

Note that you will need to manually edit the file ~/.esmtoolsrc, if you mistakenly spelled any of the user names required for accessing the repositories, or you selected the default user name (anonymous).

Uninstall ESM-tools

To uninstall your current installation of ESM-Tools you can use the following command:

$ esm_versions clean

You can also choose to manually uninstall. In order to do that, remove the installed Python packages and delete the esm_* executables. The following commands will do the trick if you installed with the install.sh script or installed using pip with user mode

$ rm ~/.local/bin/esm*
$ rm ~/.local/lib/python3.6/site-packages/esm*

Note that you may have a different Python version, so the second command might need to be adapted. You may also use pip to uninstall any of the packages:

$ pip uninstall [--user] esm-tools

The --user flag may be required when using pip.

Transitioning from the Shell Version

ESM-Master

The Makefile based esm_master of the shell version has been replaced by a (python-based) executable called esm_master that should be in your PATH after installing the new tools. The command can be called from any place now, models will be installed in the current work folder. The old commands are replaced by new, but very similar calls:

OLD WAY: NEW WAY:
make --> esm_master (to get the list of available
 targets)
make get-fesom-1.4 --> esm_master get-fesom-1.4 (download)
make conf-... --> esm_master conf-... (configure)
make comp-... --> esm_master comp-... (compile)
make clean-... --> esm_master clean-... (clean)

Apart from that, the new esm_master offers certain new functionality:

esm_master fesom (lists all available targets containing the string "fesom")
esm_master install-... (shortcut for: get- , then conf- , then comp-)
esm_master recomp-... (shortcut for: conf-, then clean-, then comp-)
esm_master log-... (overview over last commits of the model, e.g. git log)
esm_master status-... (changes in the model repository since last commit, e.g. git status)

If the user wants to define own shortcut commands, that can be done by editing esm_tools/configs/esm_master/esm_master.yaml. New wrappers for the version control software can be e.g. added in esm_tools/configs/vcs/git.yaml. Adding commands in these configuration files is sufficient that they show up in the list of targets.

The details about models, setups, etc. are now to be found in esm_tools/configs/esm_master/setups2models.yaml. This file is a strucutred list instead of a barely readable, and rapidly growing, makefile. If you want to change details of your model, or add new components, this is where it should be put. Please refer to the chapter ESM Master for further details.

ESM-Environment

A visible tool, like esm-environment used to be, doesn’t exist anymore. The information about the environment needed for compiling / running a model is contained:

	in the machine yaml file (e.g. esm_tools/configs/machines/ollie.yaml): This contains a default environment that we know works for a number of models / setups, but maybe not in an optimal way,

	in the model yaml file (e.g. esm_tools/configs/fesom/fesom-2.0.yaml): The model files are allowed to contain deviations from the default environment defined in the machine file, indicated by the keywords environment_changes, compiletime_environment_changes or runtime_environment_changes.

Please note that even though there still is a python package called esm_environment, this is just the collection of python routines used to assemble the environment. It does not contain anything to be configured by the user.

ESM-Runscripts

One main thing that has changed for the runtime tool is the way it is evoked:

OLD WAY: NEW WAY:
./runscriptname -e experiment_id esm_runscripts runscriptname -e experiment_id

Instead of calling your runscript directly, it is now interpreted and executed by the wrapper esm_runscripts, the second executable to be added to your PATH when installing the Tools. Internally, esm_runscripts reads in the script file line by line and converts it into a python dictionary. It is therefore also possible to write the “runscripts” in the form of a yaml file itself, which can be imported by python much easier. The user is invited to try the yaml-style runscripts, some example can be found in esm_tools/runscripts.

Some of the variables which had to be set in the script when using the shell version are now deprecated, these include:

	FUNCTION_PATH

	FPATH

	machine

Also the last two lines of the normel runscript for the shell version of the tools, load_all_functions and general_do_it_all, don’t do anything anymore, and can be safely removed. They don’t hurt though.

(…to be continued…)

Functions –> Configs + Python Packages

The shell functions, which used to be in esm-runscripts/functions/all, are gone. That was basically the whole point of re-coding the tools, to get rid of this mixture of model configuration, wild shell hacks, and in general lots of annoying problems. What used to be in the functions is now seperated into python code (which is actually doing things, but doesn’t have any model-, setup- or machine specific information), and yaml configurations (which are basically structured lists of all the information we have, including mesh resolutions, scenario simulation forcings,…). Anything really that you could possibly know about running a simulation belongs into the yaml configs that you can now find in esm_runscripts/configs, while ESM-Tools functionality is coded in the python packages.

Namelists

No changes. Namelists can be found in esm_tools/namelists.

YAML File Syntax

What Is YAML?

YAML is a structured data format oriented to human-readability. Because of this property,
it is the chosen format for configuration and runscript files in ESM-Tools and the
recommended format for runscripts (though bash runscripts are still supported). These
YAML files are read by the esm_parser and then converted into a Python dictionary.
The functionality of the YAML files is further expanded through the esm_parser and
other ESM-Tools packages (i.e. calendar math through the esm_calendar). The
idea behind the implementation of the YAML format in ESM-Tools is that the user only
needs to create or edit easy-to-write YAML files to run a model or a coupled setup,
speeding up the configuration process, avoiding bugs and complex syntax.
The same should apply to developers that would like to implement their models
in ESM-Tools: the implementation consists on the configuration of a few YAML files.

Warning

Tabs are not allowed as yaml indentation, and therefore, ESM-Tools will return an
error every time a yaml file with tabs is invoked (e.g. runscripts and config
files need to be ‘tab-free’).

YAML-Specific Syntax

The main YAML elements relevant to ESM-Tools are:

	Scalars: numbers, strings and booleans, defined by a key followed by : and a
value, i.e.:

model: fesom
version: "2.0"
time_step: 1800

	Lists: a collection of elements defined by a key followed by : and an indented
list of elements (numbers, strings or booleans) starting with -, i.e.:

namelists:
 - namelist.config
 - namelist.forcing
 - namelist.oce

or a list of the same elements separated by , inside square brackets [elem1, elem2]:

namelists: [namelist.config, namelist.forcing, namelist.oce]

	Dictionaries: a collection of scalars, lists or dictionaries nested inside a
general key, i.e.:

config_files:
 config: config
 forcing: forcing
 ice: ice

Some relevant properties of the YAML format are:

	Only white spaces can be used for indentation. Tabs are not allowed.

	Indentation can be used to structure information in as many levels as required, i.e. a dictionary
choose_resolution that contains a list of dictionaries (T63, T31 and T127):

choose_resolution:
 T63:
 levels: "L47"
 time_step: 450
 [...]
 T31:
 levels: "L19"
 time_step: 450
 [...]
 T127:
 levels: "L47"
 time_step: 200
 [...]

	This data can be easily imported as Python dictionaries, which is part of what the esm_parser
does.

	: should always be followed by a white space.

	Strings can be written both inside quotes (key: "string" or key: 'string') or
unquoted (key: string).

	YAML format is case sensitive.

	It is possible to add comments to YAML files using # before the comment (same as in
Python).

ESM-Tools Extended YAML Syntax

Warning

Work in progress. This chapter might be incomplete. Red statements might be imprecise or not true.

ESM-Tools offers extended functionality of the YAML files through the
esm_parser. The following subsections list the extended ESM-Tools
syntax for YAML files including calendar and math operations (see
Math and Calendar Operations).
The yaml:YAML Elements section lists the YAML elements needed for configuration files and
runscripts.

Variable Calls

Variables defined in a YAML file can be invoked on the same file or in oder files
provided that the file where it is defined is read for the given operation.
The syntax for calling an already defined variable is:

"${name_of_the_variable}"

Variables can be nested in sections. To define a variable using the value of another one that is
nested on a section the following syntax is needed:

"${<section>.<variable>}"

When using esm_parser, variables in components, setups, machine files, general information, etc.,
are grouped under sections of respective names (i.e. general, ollie, fesom, awicm, …).
To access a variable from a different file than the one in which it is declared it is necessary to
reference the file name or label as it follows:

"${<file_label>.<section>.<variable>}"

Example

Lets take as an example the variable ini_parent_exp_id inside the general section in the
FESOM-REcoM runscript runscripts/fesom-recom/fesom-recom-ollie-restart-daily.yaml:

general:
 setup_name: fesom-recom
 [...]
 ini_parent_exp_id: restart_test
 ini_restart_dir: /work/ollie/mandresm/esm_yaml_test/${ini_parent_exp_id}/restart/
 [...]

Here we use ini_parent_exp_id to define part of the restart path ini_restart_dir.
general.ini_restart_dir is going to be called from the FESOM-REcoM configuration file
configs/setups/fesom-recom/fesom-recom.yaml to define the restart directory for FESOM
fesom.ini_restart_dir:

[...]
ini_restart_dir: "${general.ini_restart_dir}/fesom/"
[...]

Note that this line adds the subfolder /fesom/ to the subdirectory.

If we would like to invoke from the same runscript some of the variables defined in another file,
for example the useMPI variable in configs/machines/ollie.yaml, then we would need to use:

a_new_variable: "${ollie.useMPI}"

Bare in mind that these examples will only work if both FESOM and REcoM are involved in the
ESM-Tool task triggered and if the task is run in Ollie (i.e. it will work for
esm_runscripts fesom-recom-ollie-restart-daily.yaml -e <experiment_id> ...).

Switches (choose_)

A YAML list named as choose_<variable> function as a switch that evaluates the given variable.
The nested element keys inside the choose_<variable> act as cases for the switch and the values of
this elements are only defined outside of the choose_<variable> if they belong to the selected
case_key:

variable_1: case_key_2

choose_variable_1:
 case_key_1:
 configuration_1: value
 configuration_2: value
 [...]
 case_key_2:
 configuration_1: value
 configuration_2: value
 [...]
 "*":
 configuration_1: value
 configuration_2: value
 [...]

The key "*" or * works as an else.

Example

An example that can better illustrate this general description is the FESOM 2.0 resolution
configuration in <PATH>/esm_tools/configs/fesom/fesom-2.0.yaml:

resolution: CORE2

choose_resolution:
 CORE2:
 nx: 126858
 mesh_dir: "${pool_dir}/meshes/mesh_CORE2_final/"
 nproc: 288
 GLOB:
 nx: 830305

Here we are selecting the CORE2 as default configuration set for the resolution variable,
but we could choose the GLOB configuration in another YAML file (i.e. a runscript), to override
this default choice.

In the case in which resolution: CORE2, then nx, mesh_dir and nproc will take the values
defined inside the choose_resolution for CORE2 (126858,
runscripts/fesom-recom/fesom-recom-ollie-restart-daily.yaml, and 288 respectively), once
resolved by the esm_parser, at the same nesting level of the choose_resolution.

Note

choose_versions inside configuration files is treated in a special way by the esm_master. To
avoid conflicts in case an additional choose_versions is needed, include the compilation information
inside a compile_infos section (including the choose_versions switch containning compilation
information). Outside of this exception, it is possible to use as many choose_<variable> repetitions
as needed.

Append to an Existing List (add_)

Given an existing list list1 or dictionary:

list1:
 - element1
 - element2

it is possible to add members to this list/dictionary by using the following syntax:

add_list1:
 - element3
 - element4

so that the variable list1 at the end of the parsing will contain
[element1, element2, element3, element4]. This is not only useful when you need to
build the list piecewise (i.e. and expansion of a list inside a choose_ switch) but
also as the YAML File Hierarchy will cause repeated variables to
be overwritten. Adding a nested dictionary in this way merges the add_<dictionary>
content into the <dictionary> with priority to add_<dictionary> elements inside
the same file, and following the YAML File Hierarchy for
different files.

Properties

	It is possible to have multiple add_ for the same variable in the same or even in different
files. That means that all the elements contained in the multiple add_ will be added to the
list after the parsing.

Exceptions

Exceptions to add_ apply only to the environment and namelist _changes (see
Environment and Namelist Changes (_changes)). For variables of the type _changes,
an add_ is only needed if the same _changes block repeats inside the same file. Otherwise, the
_changes block does not overwrite the same _changes block in other files, but their elements
are combined.

Example

In the configuration file for ECHAM (configs/components/echam/echam.yaml) the list
input_files is declared as:

[...]

input_files:
 "cldoptprops": "cldoptprops"
 "janspec": "janspec"
 "jansurf": "jansurf"
 "rrtmglw": "rrtmglw"
 "rrtmgsw": "rrtmgsw"
 "tslclim": "tslclim"
 "vgratclim": "vgratclim"
 "vltclim": "vltclim"

[...]

However different ECHAM scenarios require additional input files, for example the HIST scenario
needs a MAC-SP element to be added and we use the add_ functionality to do that:

[...]
choose_scenario:
 [...]
 HIST:
 forcing_files:
 [...]
 add_input_files:
 MAC-SP: MAC-SP
 [...]

An example for the _changes exception can be also found in the same ECHAM configuration file.
Namelist changes necessary for ECHAM are defined inside this file as:

[...]

namelist_changes:
 namelist.echam:
 runctl:
 out_expname: ${general.expid}
 dt_start:
 - ${pseudo_start_date!year}
 - ${pseudo_start_date!month}
 [...]

This changes specified here will be combined with changes in other files (i.e. echam.namelist_changes
in the coupled setups AWICM or AWIESM configuration files), not overwritten. However, ECHAM’s
version 6.3.05p2-concurrent_radiation needs of further namelist changes written down in the same
file inside a choose_ block and for that we need to use the add_ functionality:

[...]

choose_version:
 [...]
 6.3.05p2-concurrent_radiation:
 [...]
 add_namelist_changes:
 namelist.echam:
 runctl:
 npromar: "${npromar}"
 parctl:

[...]

Remove Elements from a List/Dictionary (remove_)

It is possible to remove elements inside list or dictionaries by using the
remove_ functionality which syntax is:

remove_<dictionary>: [<element_to_remove1>, <element_to_remove2>, ...]

or:

remove_<dictionary>:
 - <element_to_remove1>
 - <element_to_remove2>
 - ...

You can also remove specific nested elements of a dictionary separating the keys for
the path by .:

remove_<model>.<dictionary>.<subkey1>.<subkey2>: [<element_to_remove1>, <element_to_remove2>, ...]

Math and Calendar Operations

The following math and calendar operations are supported in YAML files:

Arithmetic Operations

An element of a YAML file can be defined as the result
of the addition, subtraction, multiplication or division of variables with the format:

key: "$((${variable_1} operator ${variable_2} operator ... ${variable_n}))"

The esm_parser supports calendar operations through esm_calendar. When performing calendar
operations, variables that are not given in date format need to be followed by their unit for
the resulting variable to be also in date format, i.e.:

runtime: $((${end_date} - ${time_step}seconds))

time_step is a variable that is not given in date format, therefore, it is necessary to use
seconds for runtime to be in date format. Another example is to subtract one day from
the variable end_date:

$((${end_date} - 1days))

The units available are:

	Units supported by arithmetic operations

	calendar units

	
seconds

minutes

days

months

years

Extraction of Date Components from a Date

It is possible to extract date components from a date variable. The syntax for such an operation
is:

"${variable!date_component}"

An example to extract the year from the initial_time variable:

yearnew: "${initial_date!syear}"

If initial_date was 2001-01-01T00:00:00, then yearnew would be 2001.

The date components available are:

	Date components

	ssecond

	Second from a given date.

	sminute

	Minute from a given date.

	shour

	Hour from a given date.

	sday

	Day from a given date.

	smonth

	Month from a given date.

	syear

	Year from a given date.

	sdoy

	Day of the year, counting from Jan. 1.

Globbing

Globbing allows to use * as a wildcard in filenames for restart, input and output files.
With this feature files can be copied from/to the work directory whose filenames are not
completely known. The syntax needed is:

file_list: common_pathname*common_pathname

Note that this also works together with the List Loops.

Example

The component NEMO produces one restart file per processor, and the part of the file name
relative to the processor is not known. In order to handle copying of restart files under
this circumstances, globbing is used in NEMO’s configuration file
(configs/components/nemo/nemo.yaml):

[...]

restart_in_sources:
 restart_in: ${expid}_${prevstep_formatted}_restart*_${start_date_m1!syear!smonth!sday}_*.nc
restart_out_sources:
 restart_out: ${expid}_${newstep_formatted}_restart*_${end_date_m1!syear!smonth!sday}_*.nc

[...]

This will include inside the restart_in_sources and restart_out_sources lists, all the files
sharing the specified common name around the position of the * symbol, following the same rules
used by the Unix shell.

Environment and Namelist Changes (_changes)

The functionality _changes is used to control environment, namelist and coupling
changes. This functionality can be used from config files, but also runscripts. If
the same type of _changes is used both in config files and a runscript for a
simulation, the dictionaries are merged following the hierarchy specified in the
YAML File Hierarchy chapter.

Environment Changes

Environment changes are used to make changes to the default environment defined in the
machine files (esm_tools/configs/machines/<name_of_the_machine>.yaml). There are
three types of environment changes:

	Key

	Description

	environment_changes

	Changes for both the compilation and the runtime environments.

	compiletime_environment_changes

	Changes to the environment applied only during compilation.

	runtime_environment_changes

	Changes to the environment applied only during runtime.

Two types of yaml elements can be nested inside an environment changes:
add_module_actions and add_export_vars.

	Use add_module_actions to include one module command or a list of them. The
shell command module is already invoked by ESM-Tools, therefore you only need to
list the options (i.e. load/unload <module_name>).

	Use add_export_vars to export one or a list of environment variables. Shell
command export is not needed here, just define the variable as
VAR_NAME=VAR_VALUE or as a nested dictionary.

Example

fesom.yaml
The model FESOM needs some environment changes for compiling in Mistral and
Blogin HPCs, which are included in FESOM’s configuration file
(esm_tools/configs/components/fesom/fesom.yaml):

[...]

compiletime_environment_changes:
 add_export_vars:
 takenfrom: fesom1
choose_computer.name:
 mistral:
 add_compiletime_environment_changes:
 add_module_actions:
 - "unload gcc"
 - "load gcc/4.8.2"
 blogin:
 add_compiletime_environment_changes:
 add_export_vars:
 - "NETCDF_DIR=/sw/dataformats/netcdf/intel.18/4.7.3/skl/"
 - "LD_LIBRARY_PATH=$NETCDF_DIR/lib/:$LD_LIBRARY_PATH"
 - "NETCDF_CXX_INCLUDE_DIRECTORIES=$NETCDF_DIR/include"
 - "NETCDF_CXX_LIBRARIES=$NETCDF_DIR/lib"
 - "takenfrom='fesom1'"

runtime_environment_changes:
 add_export_vars:
 AWI_FESOM_YAML:
 output_schedules:
 -
 vars: [restart]
 unit: ${restart_unit}
 first: ${restart_first}
 rate: ${restart_rate}
 -
 [...]

Independently of the computer, fesom.yaml exports always the takenfrom
variable for compiling. Because compiletime_environment_changes is already
defined for that purpose, any compiletime_environment_changes in a
choose_ block needs to have an add_ at the beginning. Here we see that a
choose_ block is used to select which changes to apply compile environment
(add_compiletime_environment_changes) depending on the HPC system we are in
(Mistral or Blogin). For more details on how to use the choose_ and
add_ functionalities see Switches (choose_) and
Append to an Existing List (add_).

We also see here how runtime_environment_changes is used to add nested
information about the output schedules for FESOM into an
AWI_FESOM_YAML variable that will be exported to the runtime environment.

Changing Namelists

It is also possible to specify namelist changes to a particular section of a namelist:

echam:
 namelist_changes:
 namelist.echam:
 runctl:
 l_orbvsop87: false
 radctl:
 co2vmr: 217e-6
 ch4vmr: 540e-9
 n2ovmr: 245e-9
 cecc: 0.017
 cobld: 23.8
 clonp: -0.008
 yr_perp: "remove_from_namelist"

In the example above, the namelist.echam file is changed in two specific chapters, first the section runctrl parameter l_orbsvop87 is set to false, and appropriate gas values and orbital values are set in radctl. Note that the special entry "remove_from_namelist is used to delete entries. This would translate the following fortran namelist (trucated):

&runctl
 l_orbvsop87 = .false.
/

&radctl
 co2vmr = 0.000217
 ch4vmr = 5.4e-07
 n2ovmr = 2.45e-07
 cecc = 0.017
 cobld = 23.8
 clonp = -0.008
/

Note that, although we set l_orbsvop87 to be false, it is translated to the
namelist as a fortran boolean (.false.). This occurs because ESM-Tools
“understands” that it is writing a fortan namelist and transforms the yaml booleans
into fortran.

For more examples, check the recipe in the cookbook
(Changing Namelist Entries from the Runscript).

Coupling changes

Coupling changes (coupling_changes) are typically invoked in the coupling files
(esm_tools/configs/couplings/), executed before compilation of coupled setups,
and consist of a list of shell commands to modify the configuration and make files of
the components for their correct compilation for coupling.

For example, in the fesom-1.4+echam-6.3.04p1.yaml used in AWICM-1.0,
coupling_changes lists two sed commands to apply the necessary changes to the
CMakeLists.txt files for both FESOM and ECHAM:

components:
- echam-6.3.04p1
- fesom-1.4
- oasis3mct-2.8
coupling_changes:
- sed -i '/FESOM_COUPLED/s/OFF/ON/g' fesom-1.4/CMakeLists.txt
- sed -i '/ECHAM6_COUPLED/s/OFF/ON/g' echam-6.3.04p1/CMakeLists.txt

List Loops

This functionality allows for basic looping through a YAML list. The syntax for this is:

"[[list_to_loop_through-->ELEMENT_OF_THE_LIST]]"

where ELEMENT_OF_THE_LIST can be used in the same line as a variable. This is
particularly useful to handle files which names contain common strings (i.e. outdata and
restart files, see File Dictionaries).

The following example uses the list loop functionality inside the fesom-2.0.yaml
configuration file to specify which files need to be copied from the work directory
of runs into the general experiment outdata directory. The files to be copied for runs
modeling a couple of months in year 2001 are a_ice.fesom.2001.nc, alpha.fesom.2001.nc,
atmice_x.fesom.2001.nc, etc. The string .fesom.2001.nc is present in all files so we
can use the list loop functionality together with calendar operations (Math and Calendar Operations) to have a cleaner and more generalized configure file. First, you need to declare the
list of unshared names:

outputs: [a_ice,alpha,atmice_x, ...]

Then, you need to declare the outdata_sources dictionary:

outdata_sources:
 "[[outputs-->OUTPUT]]": OUTPUT.fesom.${start_date!syear}.nc

Here, "[[outputs-->OUTPUT]]": provides the keys for this dictionary as a_ice, alpha,
atmice_x, etc., and OUTPUT is later used in the value to construct the complete file name
(a_ice.fesom.2001.nc, alpha.fesom.2001.nc, atmice_x.fesom.2001.nc, etc.).

Finally, outdata_targets dictionary can be defined to give different names to outdata files
from different runs using calendar operations:

outdata_targets:
 "[[outputs-->OUTPUT]]": OUTPUT.fesom.${start_date!syear!smonth}.${start_date!sday}.nc

The values for the keys a_ice, alpha, atmice_x, …, will be
a_ice.fesom.200101.01.nc, alpha.fesom.200101.01.nc, atmice_x.fesom.200101.01.nc, …,
for a January run, and a_ice.fesom.200102.01.nc, alpha.fesom.200102.01.nc,
atmice_x.fesom.200102.01.nc, …, for a February run.

File Dictionaries

File dictionaries are a special type of YAML elements that are useful to handle input, output,
forcing, logging, binary and restart files among others (see File dictionary types table),
and that are normally defined inside the configuration files of models. File dictionary’s keys
are composed by a file dictionary type followed by _ and an option, and the elements
consist of a list of file_tags as keys with their respective file_paths as values:

type_option:
 file_tag1: file_path1
 file_tag2: file_path2

The file_tags need to be consistent throughout the different options for files to be
correctly handled by ESM-Tools. Exceptionally, sources files can be tagged differently but
then the option files is required to link sources tags to general tags used by the other
options (see File dictionary options table below).

File dictionary types

	Key

	Description

	analysis

	User’s files for their own analysis tools (i.e. to be used in the pre-/postprocessing).

	bin

	Binary files.

	config

	Configure sources.

	couple

	Coupling files.

	ignore

	Files to be ignored in the copying process.

	forcing

	Forcing files. An example is described at the end of this section.

	log

	Log files.

	mon

	Monitoring files.

	outdata

	Output configuration files. A concise example is described in List Loops.

	restart_in

	Restart files to be copied from the experiment directory into the run directory (see Experiment Directory Structure), during the beginning of the computing phase (e.g. to copy restart files from the previous step into the new run folder).

	restart_out

	Restart files to be copied from the run directory into the experiment directory (see Experiment Directory Structure), during the tidy and resubmit phase (e.g. to copy the output restart files from a finished run into the experiment directory for later use the next run).

	viz

	Files for the visualization tool.

File dictionary options

	Key

	Description

	sources

	Source file paths or source file names to be copied to the target path. Without this option no files will be handled by ESM-Tools. If targets option is not defined, the files are copied into the default target directory with the same name as in the source directory. In that case, if two files have the same name they are both renamed to end in the dates corresponding to their run (file_name.extension_YYYYMMDD_YYYYMMDD).

	files

	Links the general file tags (key) to the source elements defined in sources. files is optional. If not present, all source files are copied to the target directory, and the source tags need to be the same as the ones in in_work and targets. If present, only the source files included in files will be copied (see the ECHAM forcing files example below).

	in_work

	Files inside the work directory of a run (<base_dir>/<experiment_name>/run_date1_date2/work) to be transferred to the target directory. This files copy to the target path even if they are not included inside the files option. in_work is optional.

	targets

	Paths and new names to be given to files transferred from the sources directory to the target directory. A concised example is described in List Loops. targets is optional.

File paths can be absolute, but most of the type_option combinations have a default folder
assigned, so that you can choose to specify only the file name. The default folders are:

	Default folders

	sources

	in_work

	targets

	bin

	
	
	

	config

	
	
	

	ignore

	
	
	

	forcing

	
	
	

	log

	
	
	

	outdata

	<base_dir>/<experiment_name>/run_date1_date2/work

	<base_dir>/<experiment_name>/run_date1_date2/work

	<base_dir>/<experiment_name>/outdata/<model>

	restart_in

	
	
	

	restart_out

	
	
	

Example for ECHAM forcing files

The ECHAM configuration file (<PATH>/configs/echam/echam.yaml) allows for choosing different
scenarios for a run. These scenarios depend on different combinations of forcing files. File sources
for all cases are first stored in echam.datasets.yaml (a further_reading file) as:

forcing_sources:
 # sst
 "amipsst":
 "${forcing_dir}/amip/${resolution}_amipsst_@YEAR@.nc":
 from: 1870
 to: 2016
 "pisst": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.nc"

 # sic
 "amipsic":
 "${forcing_dir}/amip/${resolution}_amipsic_@YEAR@.nc":
 from: 1870
 to: 2016
 "pisic": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sic_1880-2379.nc"

 [...]

Here forcing_sources store all the sources necessary for all ECHAM scenarios, and tag
them with source keys (amipsst, pisst, …). Then, it is possible to choose among
these source files inside the scenarios defined in echam.yaml using forcing_files:

choose_scenario:
 "PI-CTRL":
 forcing_files:
 sst: pisst
 sic: pisic
 aerocoarse: piaerocoarse
 aerofin: piaerofin
 aerofarir: piaerofarir
 ozone: piozone
 PALEO:
 forcing_files:
 aerocoarse: piaerocoarse
 aerofin: piaerofin
 aerofarir: piaerofarir
 ozone: piozone
 [...]

This means that for a scenario PI-CTRL the files that are handled by ESM-Tools will be
exclusively the ones specified inside forcing_files, defined in the
forcing_sources as pisst, pisic, piaerocoarse, piaerofin, piaerofarir
and piozone, and they are tagged with new general keys (sst, sic, …) that
are common to all scenarios. The source files not included in forcing_files won’t be
used.

YAML File Hierarchy

Hierarchy of YAML configuration files

The following graph illustrates the hierarchy of the different YAML configuration files.

[image: ESM-Tools configuration files hierarchy]

ESM-Tools configuration files hierarchy

ESM-Tools Variables

The esm_parser is used to read the multiple types of YAML files contained in ESM-Tools
(i.e. model and coupling configuration files, machine configurations, runscripts, etc.). Each of
these YAML files can contain two type of YAML elements/variables:

	Tool-specific elements: YAML-scalars, lists or dictionaries that include instructions and
information used by ESM-Tools. These elements are predefined inside the esm_parser or other
packages inside ESM-Tools and are used to control the ESM-Tools functionality.

	Setup/model elements: YAML-scalars, lists of dictionaries that contain
information defined in the model/setup config files (i.e. awicm.yaml, fesom.yaml, etc.).
This information is model/setup-specific and causes no effect unless it is combined with the
tool-specific elements. For example, in fesom.yaml for FESOM-1.0 the variable
asforcing exists, however this means nothing to ESM-Tools by its own. In this case, this
variable is used in namelist_changes (a tool-specific element) to state the type of forcing
to be used and this is what actually makes a difference to the simulation. The advantage of
having this variable already defined and called in namelist_changes, in the fesom.yaml
is that the front-end user can simply change the forcing type by changing the value of
asforcing (no need for the front-end user to use namelist_changes).

The following subsection lists and describes the Tool-specific elements used to operate ESM-Tools.

Note

Most of the Tool-specific elements can be defined in any file (i.e. configuration file,
runscript, …) and, if present in two files used by ESM-Tools at a time, the value is chosen
depending on the ESM-Tools file priority/read order (YAML File Hierarchy).
Ideally, you would like to declare as many elements as possible inside the configuration files,
to be used by default, and change them in the runscripts when necessary. However, it is ultimately
up to the user where to setup the Tool-specific elements.

Tool-Specific Elements/Variables

The following keys should/can be provided inside configuration files for models
(<PATH>/esm_tools/configs/components/<name>/<name>.yaml), coupled setups
(<PATH>/esm_tools/configs/setups/<name>/<name>.yaml) and runscripts. You can find
runscript templates in esm_tools/runscripts/templates/).

Installation variables

	Key

	Description

	model

	Name of the model/setup as listed in the config files (esm_tools/configs/components for models and esm_tools/configs/setups for setups).

	setup_name

	Name of the coupled setup.

	version

	Version of the model/setup (one of the available options in the available_versions list).

	available_versions

	List of supported versions of the component or coupled setup.

	git-repository

	Address of the model’s git repository.

	branch

	Branch from where to clone.

	destination

	Name of the folder where the model is downloaded and compiled, in a coupled setup.

	comp_command

	Command used to compile the component.

	install_bins

	Path inside the component folder, where the component is compiled by default. This path is necessary because, after compilation, ESM-Tools needs to copy the binary from this path to the <component/setup_path>/bin folder.

Runtime variables

	Key

	Description

	account

	User account of the HPC system to be used to run the experiment.

	model_dir

	Absolute path of the model directory (where it was installed by esm_master).

	setup_dir

	Absolute path of the setup directory (where it was installed by esm_master).

	executable

	Name of the component executable file, as it shows in the <component/setup_path>/bin after compilation.

	compute_time

	Estimated computing time for a run, used for submitting a job with the job scheduler.

	time_step

	Time step of the component in seconds.

	lresume

	Boolean to indicate whether the run is an initial run or a restart.

	pool_dir

	Path to the pool directory to read in mesh data, forcing files, inputs, etc.

	namelists

	List of namelist files required for the model.

	namelist_changes

	Functionality to handle changes in the namelists from the yaml files (see Changing Namelists).

	nproc

	Number of processors to use for the model.

	nproca/nprocb

	Number of processors for different MPI tasks/ranks. Incompatible with nproc.

	base_dir

	Path to the directory that will contain the experiment folder (where the experiment will be run and data will be stored).

	post_processing

	Boolean to indicate whether to run postprocessing or not.

	File Dictionaries

	YAML dictionaries used to handle input, output, forcing, logging, binary and restart files (see File Dictionaries).

	expid

	ID of the experiment. This variable can also be defined when calling esm_runscripts with the -e flag.

	ini_restart_exp_id

	ID of the restarted experiment in case the current experiment has a different expid. For this variable to have an effect lresume needs to be true (e.g. the experiment is a restart).

	ini_restart_dir

	Path of the restarted experiment in case the current experiment runs in a different directory. For this variable to have an effect lresume needs to be true (e.g. the experiment is a restart).

	execution_command

	Command for executing the component, including ${executable} and the necessary flags.

Calendar variables

	Key

	Description

	initial_date

	Date of the beginning of the simulation in the format YYYY-MM-DD. If the simulation is a restart, initial_date marks the beginning of the restart.

	final_date

	Date of the end of the simulation in the format YYYY-MM-DD.

	start_date

	Date of the beginning of the current run.

	end_date

	Date of the end of the current run.

	current_date

	Current date of the run.

	next_date

	Next run initial date.

	nyear, nmonth, nday, nhour, nminute

	Number of time unit per run. They can be combined (i.e. nyear: 1 and nmonth: 2 implies that each run will be 1 year and 2 months long).

	parent_date

	Ending date of the previous run.

Coupling variables

	Key

	Description

	grids

	List of grids and their parameters (i.e. name, nx, ny, etc.).

	coupling_fields

	List of coupling field dictionaries containing coupling field variables.

	nx

	When using oasis3mct, used inside grids to define the first dimension of the grid.

	ny

	When using oasis3mct, used inside grids to define the second dimension of the grid.

	coupling_methods

	List of coupling methods and their parameters (i.e. time_transformation, remapping, etc.).

	time_transformation

	Time transformation used by oasis3mct, defined inside coupling_methods.

	remapping

	Remappings and their parameters, used by oasis3mct, defined inside coupling_methods.

Other variables

	Key

	Description

	metadata

	List to incude descriptive information about the model (i.e. Authors, Institute, Publications, etc.) used to produce the content of Supported Models. This information should be organized in nested keys followed by the corresponding description. Nested keys do not receive a special treatment meaning that you can include here any kind of information about the model. Only the Publications key is treated in a particular way: it can consist of a single element or a list, in which each element contains a link to the publication inside <> (i.e. - Title, Authors, Journal, Year. <https://doi.org/...>).

Supported Models

AMIP

DEBM

	Institute

	AWI

	Description

	dEBM is a surface melt scheme to couple ice and climate models in paleo applications.

	Publications

	Krebs-Kanzow, U., Gierz, P., and Lohmann, G., Brief communication: An Ice surface melt scheme including the diurnal cycle of solar radiation, The Cryosphere Discuss., accepted for publication [https://doi.org/10.5194/tc-2018-130]

	License

	MIT

ECHAM

	Institute

	MPI-Met

	Description

	The ECHAM atmosphere model, major version 6

	Authors

	Bjorn Stevens (bjorn.stevens@mpimet.mpg.de) among others at MPI-Met

	Publications

	Atmosphericcomponent of the MPI-M earth system model: ECHAM6 [https://doi.org/10.1002/jame.20015]

	License

	Please make sure you have a license to use ECHAM. In case you are unsure, please contact redmine…

ESM_INTERFACE

	Institute

	Alfred Wegener Institute

	Description

	Coupling interface for a modular coupling approach of ESMs.

	Authors

	Nadine Wieters (nadine.wieters@awi.de)

	Publications

	`None`_

	License

	None

FESOM

	Institute

	Alfred Wegener Institute

	Description

	Multiresolution sea ice-ocean model that solves the equations of motion on unestructured meshes

	Authors

	Dmitry Sidorenko (Dmitry.Sidorenko@awi.de), Nikolay V. Koldunov (nikolay.koldunov@awi.de)

	Publications

	The Finite-volumE Sea ice-Ocean Model (FESOM2) [https://doi.org/10.5194/gmd-10-765-2017]

Scalability and some optimization of the Finite-volumE Sea ice-Ocean Model, Version 2.0 (FESOM2) [https://doi.org/10.5194/gmd-12-3991-2019]

	License

	Please make sure you have a licence to use FESOM. In case you are unsure, please contact redmine…

FESOM_MESH_PART

	Description

	The FESOM Mesh Partioner (METIS)

HDMODEL

ICON

	Institute

	MPI-Met

	Description

	The ICON atmosphere model, major version 2

	Authors

	Marco Giorgetta (marco.giorgetta@mpimet.mpg.de), Peter Korn, Christian Reick, Reinhard Budich

	Publications

	ICON-A, the Atmosphere Component of the ICON Earth System Model: I. Model Description [https://doi.org/10.1029/2017MS001242]

	License

	Please make sure you have a license to use ICON. In case you are unsure, please contact redmine…

JSBACH

MPIOM

	Institute

	MPI-Met

	Description

	The ocean-sea ice component of the MPI-ESM. MPIOM is a primitive equation model (C-Grid, z-coordinates, free surface) with the hydrostatic and Boussinesq assumptions made.

	Authors

	Till Maier-Reimer, Helmuth Haak, Johann Jungclaus

	Publications

	Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model [https://doi.org/10.1002/jame.20023]

The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates [https://doi.org/10.1016/S1463-5003(02)00015-X]

	License

	Please make sure you have a licence to use MPIOM. In case you are unsure, please contact redmine…

NEMO

	Organization

	Nucleus for European Modelling of the Ocean

	Institute

	IPSL

	Description

	NEMO standing for Nucleus for European Modelling of the Ocean is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium.

	Authors

	Gurvan Madec and NEMO System Team (nemo_st@locean-ipsl.umpc.fr)

	Publications

	NEMO ocean engine [http://doi.org/10.5281/zenodo.1464816]

	License

	Please make sure you have a license to use NEMO. In case you are unsure, please contact redmine…

NEMOBASEMODEL

OASIS3MCT

OpenIFS

	Institute

	ECMWF

	Description

	OpenIFS provides research institutions with an easy-to-use version of the ECMWF IFS (Integrated Forecasting System).

	Authors

	Glenn Carver (openifs-support@ecmwf.int)

	Website

	https://www.ecmwf.int/en/research/projects/openifs

	License

	Please make sure you have a licence to use OpenIFS. In case you are unsure, please contact redmine…

PISM

	Institute

	UAF and PIK

	Description

	The Parallel Ice Sheet Model (PISM) is an open source, parallel, high-resolution ice sheet model.

	Authors

	Ed Bueler, Jed Brown, Anders Levermann, Ricarda Winkelmann and many more (uaf-pism@alaska.edu)

	Publications

	Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model [https://doi.org/10.1029/2008JF001179]

The Potsdam parallel ice sheet model (PISM-PIK) - Part 1: Model description [https://doi.org/10.5194/tc-5-715-2011]

	License

	GPL 3.0

RECOM

	Institute

	AWI

	Description

	REcoM (Regulated Ecosystem Model) is an ecosystem and biogeochemistry model.

	Authors

	Judith Hauck, Ozgur Gurses

	Publications

	Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode [https://doi.org/10.1002/2013GB004600]

Arctic Ocean biogeochemistry in the high resolution FESOM 1.4-REcoM2 model [https://doi.org/10.1016/j.pocean.2018.09.006]

	License

	Please make sure you have a licence to use REcoM. In case you are unsure, please contact redmine…

RNFMAP

SAMPLE

SCOPE

	Institute

	Alfred Wegener Institute

	Description

	The Script-Based Coupler

	Authors

	Paul Gierz (pgierz@awi.de)

TUX

	Institute

	wiki

	Description

	Tux image

	Authors

	who knows

	Publications

	`are you serious?`_

	License

	GPL

VILMA

XIOS

	Institute

	IPSL and CEA

	Description

	A library dedicated to I/O management in climate codes.

	Authors

	Yann Meurdesoif (yann.meurdesoif@cea.fr)

	Website

	https://portal.enes.org/models/software-tools/xios

	License

	Please make sure you have a licence to use XIOS. In case you are unsure, please contact redmine…

YAC

	Information

	For more information about YAC please go to the webpage: https://dkrz-sw.gitlab-pages.dkrz.de/yac/index.html

YAXT

	Information

	For more information about YAXT please …

	Description

	yaxt

	Authors

	

	Publications

	``_

	License

	

ESM Master

Usage: esm_master

To use the command line tool esm_master, just enter at a prompt:

$ esm_master

The tool may ask you to configure your settings; which are stored in your home folder under ${HOME}/.esmtoolsrc. A list of avaiable models, coupled setups, and available operations are printed to the screen, e.g.:

setups:
 awicm:
 1.0: ['comp', 'clean', 'get', 'update', 'status', 'log', 'install', 'recomp']
 CMIP6: ['comp', 'clean', 'get', 'update', 'status', 'log', 'install', 'recomp']
 2.0: ['comp', 'clean', 'get', 'update', 'status', 'log', 'install', 'recomp']
[...]

As can be seen in this example, esm_master supports operations on the coupled setup awicm in the versions 1.0, CMIP6 and 2.0; and what the tool can do with that setup. You execute esm_master by calling:

$ esm_master operation-software-version,

e.g.:

$ esm_master install-awicm-2.0

By default, esm_master supports the following operations:

	get:
	Cloning the software from a repository, currently supporting git and svn

	conf:
	Configure the software (only needed by mpiesm and icon at the moment)

	comp:
	Compile the software. If the software includes libraries, these are compiled first. After compiling the binaries can be found in the subfolders bin and lib.

	clean:
	Remove all the compiled object files.

	install:
	Shortcut to get, then conf, then comp.

	recomp:
	Shortcut to conf, then clean, then comp.

	update:
	Get the newest commit of the software from the repository.

	status:
	Get the state of the local database of the software (e.g. git status)

	log:
	Get a list of the last commits of the local database of the software (e.g. git log)

To download, compile, and install awicm-2.0; you can say:

$ esm_master install-awicm-2.0

This will trigger a download, if needed a configuration, and a compilation process. Similarly, you can recompile with recomp-XXX, clean with clean-XXX, or do individual steps, e.g. get, configure, comp.

The download and installation will always occur in the current working directory.

You can get further help with:

$ esm_master --help

Configuring esm-master for Compile-Time Overrides

It is possible that some models have special compile-time settings that need to be included, overriding the machine defaults. Rather than placing these changes in configs/machines/NAME.yaml, they can be instead placed in special blocks of the component or model configurations, e.g.:

compiletime_environment_changes:
 add_export_vars:
 [...]

The same is also possible for specifying runtime_environment_changes.

ESM-Versions

New with the Tools version 3.1.5, you will find an executable in your path called esm_version. This was added by Paul Gierz to help the user / developer to keep track of / upgrade the python packages belonging to ESM Tools.

Usage

It doesn’t matter from which folder you call esm_versions. You have two subcommands:

esm_versions check gives you the version number of each
 installed esm python package
esm_versions upgrade upgrades all installed esm python
 packages to the newest version
 of the release branch

Notice that you can also upgrade single python packages, e.g.:

esm_versions upgrade esm_parser upgrades only the package esm_parser
 to the newest version of the release
 branch

And yes, esm_versions can upgrade itself.

Getting ESM-Versions

As was said before, if you have the Tools with a version newer than 3.1.4, you should already have esm_versions in your path. In case you are on an older version of the Tools, or it is missing because of problems, you need to remove the installed python packages by hand one last time, and then reinstall them using the installer:

	Make sure to push all your local changes to branches of the repos, or save them otherwise!

	Remove the installed python libs:

$ rm -rf ~/.local/lib/python-whatever_your_version/site-packages/esm*

	Remove the installed executables:

$ rm -rf ~/.local/bin/esm*

	Upgrade the repository esm_tools:

$ cd path/to/esm_tools
$ git checkout release
$ git pull

	Re-install the python packages:

$./install.sh

You should now be on the most recent released version of the tools, and esm_versions should be in your PATH.

ESM Runscripts

Usage

esm_runscripts [-h] [-d] [-v] [-e EXPID] [-c] [-P] [-j LAST_JOBTYPE]
 [-t TASK] [-p PID] [-x EXCLUDE] [-o ONLY]
 [-r RESUME_FROM] [-U]
 runscript

Arguments

	Optional arguments

	Description

	-h, –help

	Show this help message and exit.

	-d, –debug

	Print lots of debugging statements.

	-v, –verbose

	Be verbose.

	-e EXPID, –expid EXPID

	The experiment ID to use. Default test.

	-c, –check

	Run in check mode (don’t submit job to supercomputer).

	-P, –profile

	Write profiling information (esm-tools).

	-j LAST_JOBTYPE, –last_jobtype LAST_JOBTYPE

	Write the jobtype this run was called from (esm-tools internal).

	-t TASK, –task TASK

	The task to run. Choose from: compute, post, couple, tidy_and_resubmit.

	-p PID, –pid PID

	The PID of the task to observe.

	-x EXCLUDE, –exclude EXCLUDE

	E[x]clude this step.

	-o ONLY, –only ONLY

	[o]nly do this step.

	-r RESUME_FROM, –resume-from RESUME_FROM

	[r]esume from this step.

	-U, –update

	[U]pdate the runscript in the experiment folder and associated files

	-i, –inspect

	This option can be used to [i]nspect the results of a previous
run, for example one prepared with -c. This argument needs an
additional keyword. Choose among: overview (gives you the
same litte message you see at the beginning of each run, lastlog
(displays the last log file), explog (the overall experiment
logfile), datefile (the overall experiment logfile), config
(the Python dict that contains all information), size (the size
of the experiment folder), a filename or a directory name output
the content of the file /directory if found in the last
run_ folder.)

Running a Model/Setup

ESM-Runscripts is the ESM-Tools package that allows the user to run the experiments.
ESM-Runscripts reads the runscript (either a bash or yaml file), applies the
required changes to the namelists and configuration files, submits the runs of the
experiment to the compute nodes, and handles and organizes restart, output and log files.
The command to run a runscript is:

$ esm_runscripts <runscript.yaml/.run> -e <experiment_ID>

The runscript.yaml/.run should contain all the information regarding the experiment
paths, and particular configurations of the experiment (see the yaml:Runscripts section
for more information about the syntax of yaml runscripts). The experiment_ID is used
to identify the experiment in the scheduler and to name the experiment’s directory (see
Experiment Directory Structure). Omitting the argument
-e <experiment_ID> will create an experiment with the default experimant ID test.

ESM-Runscript allows to run an experiment check by adding the -c flag to the previous
command. This check performs all the system operations related to the experiment that would
take place on a normal run (creates the experiment directory and subdirectories, copies the
binaries and the necessary restart/forcing files, edits the namelists, …) but stops before
submitting the run to the compute nodes. We strongly recommend running first a check before
submitting an experiment to the compute nodes, as the check outputs contains already valuable
information to understand whether the experiment will work correctly or not (we strongly
encourage users to pay particular attention to the Namelists and the Missing files sections
of the check’s output).

Job Phases

[image: ESM-Tools job phases]

ESM-Tools job phases

The following table summarizes the job phases of ESM-Runscripts and gives a brief description.
…

Running only part of a job

It’s possible to run only part of a job. This is particularly interesting for
development work; when you might only want to test a specific phase without
having to run a whole simulation.

As an example; let’s say you only want to run the tidy phase of a
particular job; which will move things from the particular run folder to the
overall experiment tree. In this example; the experiment will be called test001:

esm_runscripts ${PATH_TO_USER_CONFIG} -t tidy_and_resubmit

Experiment Directory Structure

All the files related to a given experiment are saved in the Experiment Directory. This includes
among others model binaries, libraries, namelists, configuration files, outputs, restarts, etc.
The idea behind this approach is that all the necessary files for running an experiment are
contained in this folder (the user can always control through the runscript or configuration files
whether the large forcing and mesh files also go into this folder), so that the
experiment can be reproduced again, for example, even if there were changes into one of the
model’s binaries or in the original runscript.

The path of the Experiment Directory is composed by the general.base_dir path specified in the
runscript (see yaml:Runscripts syntax) followed by the given experiment_ID during the
esm_runscripts call:

<general.base_dir>/<experiment_ID>

The main experiment folder (General exp dir) contains the subfolders indicated in the graph
and table below. Each of these subfolders contains a folder for each component in the experiment
(i.e. for an AWI-CM experiment the outdata folder will contain the subfolders echam,
fesom, hdmodel, jsbach, oasis3mct).

The structure of the run folder run_YYYYMMDD-YYYYMMDD (Run dir in the graph) replicates
that of the general experiment folder. Run directories are created before each new run and they are
useful to debug and restart experiments that have crashed.

[image: Experiment directory structure]

Experiment directory structure

	Subfolder

	Files

	Description

	analysis

	user’s files

	Results of user’s “by-hand” analysis can be placed here.

	bin

	component binaries

	Model binaries needed for the experiment.

	config

	
	<experiment_ID>_
finished_config.yaml

	namelists

	other configuration
files

	Configuration files for the experiment including
namelists and other files specified in the component’s
configuration files
(<PATH>/esm_tools/configs/<component>/<component>.yaml,
see File Dictionaries).
The file <experiment_ID>_finished_config.yaml is
located at the base of the config folder and contains
the whole ESM-Tools variable space for the experiment,
resulting from combining the variables of the
runscript, setup and component configuration files, and
the machine environment file.

	couple

	coupling related files

	Necessary files for model couplings.

	forcing

	forcing files

	Forcing files for the experiment. Only copied here when
specified by the user in the runscript
or in the configuration files
(File Dictionaries).

	input

	input files

	Input files for the experiment. Only copied here when
specified by the user in the runscript
or in the configuration files
(File Dictionaries).

	log

	
	<experiment_ID>_
<setup_name>.log

	component log files

	Experiment log files. The component specific log files
are placed in their respective subfolder. The general
log file <experiment_ID>_<setup_name>.log reports
on the ESM-Runscripts Job Phases
and is located at the base of the log folder. Log
file names and copying instructions should be included
in the configuration files of components
(File Dictionaries).

	mon

	user’s files

	Monitoring scripts created by the user can be placed here.

	outdata

	outdata files

	Outdata files are placed here. Outdata file names and
copying instructions should be included in the
configuration files of components
(File Dictionaries).

	restart

	restart files

	Restart files are placed here. Restart file names and
copying instructions should be included in the
configuration files of components
(File Dictionaries).

	run_YYYYMMDD-YYYYMMDD

	run files

	Run folder containing all the files for a given run.
Folders contained here have the same names as the ones
contained in the general experiment folder (analysis,
bin, config, etc). Once the run is finished
the run files are copied to the general experiment folder.

	scripts

	
	esm_tools folder
containing:

	all namelists

	all functions

	<experiment_ID>_
compute_YYYYMMDD-
YYYYMMDD.sad>

	<experiment_ID>_
compute_YYYYMMDD-
YYYYMMDD_<JobID>.log

	<experiment_ID>_
<setup_name>.date

	original runscript

	file.log

	hostfile_srun

	Contains all the scripts needed for the experiment. A
subfolder esm_tools includes all the config files
and namelists of ESM-Tools (a copy of the configs
and namelists folders in the esm_tools
installation folder). It also contains the .sad files
to be submitted to slurm.
The file
<experiment_ID>_compute_YYYYMMDD_YYYYMMDD_<JobID>.log
is the log file for the experiment run. The
<experiment_ID>_<setup_name>.date indicates the
finishing date of the last run.

	unknown

	
	Folder where all the unknown files from
run_YYYYMMDD_YYYYMMDD/work are copied.

	viz

	user’s files

	Aimed for user’s visualization scripts.

	work

	
	component files

	output files before
copied to the
output folder

	restart files before
copied to the
restart folder

	The work folder inside the run_YYYYMMDD_YYYYMMDD
folder is the main directory where the components are
executed. Output and restart files are generated here
before being copied to their respective folders.

If one file was to be copied in a directory containing a file with the same name,
both files get renamed by the addition of their start date and end dates at the
end of their names (i.e. fesom.clock_YYYYMMDD-YYYYMMDD).

Note

Having a general and several run subfolders means that files are duplicated and, when
models consist of several runs, the general directory can end up looking very untidy.
Run folders were created with the idea that they will be deleted once all files
have been transferred to their respective folders in the general experiment directory.
The default is not to delete this folders as they can be useful for debugging or
restarting a crashed simulation, but the user can choose to delete them
(see Cleanup of run_ directories).

Cleanup of run_ directories

Debugging an Experiment

To debug an experiment we recommend checking the following files that you will find, either
in the general experiment directory or in the run subdirectory:

	The ESM-Tools variable space file config/<experiment_ID>_finished_config.yaml.

	The run log file run_YYYYMMDD-YYYYMMDD/<experiment_ID>_compute_YYYYMMDD-YYYYMMDD_<JobID>.log`.

For interactive debugging, you may also add the following to the general section of your configuration file.
This will enable the pdb Python debugger [https://docs.python.org/3/library/pdb.html#debugger-commands], and allow you to step through the recipe.

general:
 debug_recipe: True

Setting the file movement method for filetypes in the runscript

By default, esm_runscripts copies all files initially into the first run_-folder, and from there to work. After the run, outputs, logs, restarts etc. are copied
from work to run_, and then moved from there to the overall experiment folder. We chose that as the default setting as it is the safest option, leaving the user
with everything belonging to the experiment in one folder. It is also the most disk space consuming, and it makes sense to link some files into the experiment rather
than copy them.

As an example, to configure esm_runscripts for an echam-experiment to link the forcing and inputs, one can add the following to the runscript yaml file:

echam:
 file_movements:
 forcing:
 all_directions: "link"
 input:
 init_to_exp: "link"
 exp_to_run: "link"
 run_to_work: "link"
 work_to_run: "link"

Both ways to set the entries are doing the same thing. It is possible, as in the input case, to set the file movement method independently for each of the
directions; the setting all_directions is just a shortcut if the method is identical for all of them.

ESM MOTD

The package esm_motd is an ESM-Tools integrated message-of-the-day system,
intended as a way for the ESM-Tools Development Team to easily announce new releases
and bug fixes to the users without the need of emailing.

It checks the versions of the different ESM-Tools packages installed by the user, and
reports back to the user (writing to stdout) about packages that have available
updates, and what are the new improvements that they provide (i.e. reports back that a
bug in a certain package has been solved).

This check occurs every time the user uses esm_runscripts.

The messages, their corresponding versions and other related information is stored
online in GitHub and accessed by ESM-Tools also online to produce the report. The user
can look at this file if necessary here:
<https://github.com/esm-tools/esm_tools/tree/release/esm_tools/motd/motd.yaml>_.

Warning

The motd.yaml file is to be modified exclusively by the ESM-Tools Core
Development Team, so… stay away from it ;-)

Cookbook

In this chapter you can find multiple recipes for different ESM-Tools functionalities, such
running a model, adding forcing files, editing defaults in namelists, etc.

If you’d like to contribute with your own recipe, or ask for a recipe, please open a
documentation issue on our GitHub repository [https://github.com/esm-tools/esm_tools/issues/new?assignees=&labels=documentation&template=doc_request_contribution.md&title=].

Note

Throughout the cookbook, we will sometimes refer to a nested part of a
configuration via dot notation, e.g. a.b.c. Here, we mean the following
in a YAML config file:

a:
 b:
 c: "foo"

This would indicate that the value of a.b.c is "foo". In Python, you
would access this value as a["b"]["c"].

Change/Add Flags to the sbatch Call

Feature available since version: 4.2

If you are using SLURM batch system together with ESM-Tools (so far the default
system), you can modify the sbatch call flags by modifying the following variables
from your runscript, inside the computer section:

	Key

	Description

	mail_type, mail_user

	Define these two variables to get updates about your slurm-job through email.

	single_proc_submit_flag

	By default defined as --ntasks-per-node=1

	additional_flags

	To add any additional flag that is not predefined in ESM-Tools

Example

Assume you want to run a simulation using the Quality of Service flag (--qos) of
SLURM with value 24h. Then, you’ll need to define the additional_flags inside
the computer section of your runscript. This can be done by adding the following to
your runscript:

computer:
 additional_flags: "--qos=24h"

Applying a temporary disturbance to ECHAM to overcome numeric instability (lookup table overflows of various kinds)

Feature available since version: esm_runscripts v4.2.1

From time to time, the ECHAM family of models runs into an error resulting
from too high wind speeds. This may look like this in your log files:

30: ==
30:
30: FATAL ERROR in cuadjtq (1): lookup table overflow
30: FINISH called from PE: 30

To overcome this problem, you can apply a small change to the factor “by which
stratospheric horizontal diffussion is increased from one level to the next
level above.” (mo_hdiff.f90), that is the namelist parameter enstdif,
in the dynctl section of the ECHAM namelist. As this is a common problem,
there is a way to have the run do this for specific years of your simulation. Whenever
a model year crashes due to numeric instability, you have to apply the method outlined
below.

	Generate a file to list years you want disturbed.

In your experiment script folder (not the one specific for each run),
you can create a file called disturb_years.dat. An abbreviated file tree
would look like:

[image: disturb_years.dat location]

disturb_years.dat location

	Add years you want disturbed.

The file should contain a list of years the disturbance should be applied
to, seperated by new lines. In practice, you will add a new line with the
value of the model year during which the model crashes whenever such a crash
occurs.

Example

In this example, we disturb the years 2005, 2007, and 2008 of an experiment
called EXAMPLE running on ollie:

$ cat /work/ollie/pgierz/test_esmtools/EXAMPLE/scripts/disturb_years.dat
2005
2007
2008

You can also set the disturbance strength in your configuration under
echam.disturbance. The default is 1.000001. Here, we apply a 200%
disturbance whenever a “disturb_year” is encountered.

echam:
 disturbance: 2.0

See also

	ECHAM6 User Handbook [https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/ECHAM/echam6_userguide.pdf], Table 2.4, dynctl

	Relevant source code [https://github.com/esm-tools/esm_runscripts/blob/103d0f3d614688efb839aa9292d843da49bd3788/esm_runscripts/namelists.py#L182-L217]

Changing Namelist Entries from the Runscript

Feature available since version: 4.2

You can modify namelists directly from your user yaml runscript configuration.

	Identify which namelist you want to modify and ensure that it is in the correct section.
For example, you can only modify ECHAM specific namelists from an ECHAM block.

	Find the subsection (“chapter”) of the namelist you want to edit.

	Find the setting (“key”) you want to edit

	Add a namelist_changes block to your configuration, specify next the
namelist filename you want to modify, then the chapter, then the key, and
finally the desired value.

In dot notation, this will look like:
<model_name>.namelist_changes.<namelist_name>.<chapter_name>.<key_name> = <value>

Example

Here are examples for just the relevant YAML change, and for a full runscript using this feature.

SnippetFull Runscript
In this example, we modify the co2vmr of the radctl section of
namelist.echam.

echam:
 namelist_changes:
 namelist.echam:
 radctl:
 co2vmr: 1200e-6

In this example, we set up AWI-ESM 2.1 for a 4xCO2 simulation. You can
see how multiple namelist changes are applied in one block.

general:
 setup_name: "awiesm"
 compute_time: "02:30:00"
 initial_date: "2000-01-01"
 final_date: "2002-12-31"
 base_dir: "/work/ab0246/a270077/For_Christian/experiments/"
 nmonth: 0
 nyear: 1
 account: "ab0246"

echam:
 restart_unit: "years"
 nprocar: 0
 nprocbr: 0
 namelist_changes:
 namelist.echam:
 radctl:
 co2vmr: 1137.e-6
 parctl:
 nprocar: 0
 nprocbr: 0
 runctl:
 default_output: True

awiesm:
 version: "2.1"
 postprocessing: true
 scenario: "PALEO"
 model_dir: "/work/ab0246/a270077/For_Christian/model_codes/awiesm-2.1/"

fesom:
 version: "2.0"
 res: "CORE2"
 pool_dir: "/pool/data/AWICM/FESOM2"
 mesh_dir: "/work/ba1066/a270061/mesh_CORE2_finaltopo_mean/"
 restart_rate: 1
 restart_unit: "y"
 restart_first: 1
 lresume: 0
 namelist_changes:
 namelist.config:
 paths:
 ClimateDataPath: "/work/ba0989/a270077/AWIESM_2_1_LR_concurrent_rad/nonstandard_input_files/fesom/hydrography/"

jsbach:
 input_sources:
 jsbach_1850: "/work/ba1066/a270061/mesh_CORE2_finaltopo_mean/tarfilesT63/input/jsbach/jsbach_T63CORE2_11tiles_5layers_1850.nc"

Practical Usage

It is generally a good idea to run your simulation once in check mode
before actually submitting and examining the resulting namelists:

$ esm_runscripts <your_config.yaml> -e <expid> -c

The namelists are printed in their final form as part of the log during the job
submission and can be seen on disk in the work folder of your first
run_XZY folder.

Note that you can have several chapters for one namelist or several namelists
included in one namelist_changes block, but you can only have one
namelist_changes block per model or component (see
Changing Namelists).

See also

	Default namelists on GitHub [https://github.com/esm-tools/esm_tools/tree/release/namelists]

	Changing Namelists

	What Is YAML?

How to setup runscripts for different kind of experiments

This recipe describes how to setup a runscript for the following different kinds of experiments. Besides the variables described in ESM-Tools Variables, add the following variables to your runscript, as described below.

	Initial run: An experiment from initial model conditions.

general:
 lresume: 0

	Restart: An experiment that restarts from a previous experiment with the same experiment id.

general:
 lresume: 1

	Branching off: An experiment that restarts from a previous experiment but with a different experiment id.

general:
 lresume: 1
 ini_parent_exp_id: <old-experiment-id>
 ini_restart_dir: <path-to-restart-dir-of-old-experiment>/restart/

	Branching off and redate: An experiment that restarts from a previous experiment with a different experiment id and if this experiment should be continued with a diiferent start date.

general:
 lresume: 1
 ini_parent_exp_id: <old-experiment-id>
 ini_restart_dir: <path-to-restart-dir-of-old-experiment>/restart/
 first_initial_year: <year>

See also

	ESM-Tools Variables

	What Is YAML?

Implement a New Model

Feature available since version: 4.2

	Upload your model into a repository such us gitlab.awi.de, gitlab.dkrz.de or GitHub.
Make sure to set up the right access permissions, so that you comply with the licensing of
the software you are uploading.

	If you are interested in implementing more than one version of the model, we recommend you
to commit them to the master branch in the order they were developed, and that you create
a tag per version. For example:

	Clone the empty master branch you just created and add your model files to it:

$ git clone https://<your_repository>
$ cp -rf <your_model_files_for_given_version> <your_repository_folder>
$ git add .

	Commit, tag the version and push the changes to your repository:

$ git commit -m "your comment here"
$ git tag -a <version_id> -m "your comment about the version"
$ git push -u origin <your_master_branch>
$ git push origin <version_id>

	Repeat steps a and b for all the versions that you would like to be present in
ESM-Tools.

	Now that you have your model in a repository you are ready to implement it into esm_tools.
First, you will need to create your own branch of esm_tools, following the steps 1-4 in
Contribution to esm_tools Package. The recommended name for the branch
would be feature/<name_of_your_model>.

	Then you will need to create a folder for your model inside esm_tools/configs/components
and create the model’s yaml file:

$ mkdir <PATH>/esm_tools/configs/components/<model>
$ touch <PATH>/esm_tools/configs/components/<model>/<model>.yaml

	Use your favourite text editor to open and edit your <model>.yaml in the
esm_tools/configs/components/<model> folder:

$ <your_text_editor> <PATH>/esm_tools/configs/components/<model>/<model>.yaml

	Complete the following information about your model:

YOUR_MODEL YAML CONFIGURATION FILE
#

model: your_model_name
type: type_of_your_model # atmosphere, ocean, etc.
version: "the_default_version_of_your_model"

	Include the names of the different versions in the available_versions section and the compiling
information for the default version:

[...]

available_versions:
- "1.0.0"
- "1.0.1"
- "1.0.2"
git-repository: "https://your_repository.git"
branch: your_model_branch_in_your_repo
install_bins: "path_to_the_binaries_after_comp"
comp_command: "your_shell_commands_for_compiling" # You can use the defaults "${defaults.comp_command}"
clean_command: "your_shell_commands_for_cleaning" # You can use the defaults "${defaults.clean_command}"

executable: your_model_command

setup_dir: "${model_dir}"
bin_dir: "${setup_dir}/name_of_the_binary"

In the install_bins key you need to indicate the path inside your model folder where the
binaries are compiled to, so that esm_master can find them once compiled. The
available_versions key is needed for esm_master to list the versions of your model.
The comp_command key indicates the command needed to compile your model, and can be set as
${defaults.comp_command} for a default command
(mkdir -p build; cd build; cmake ..; make install -j `nproc --all`), or you can define your
own list of compiling commands separated with ; ("command1; command2").

	At this point you can choose between including all the version information inside the same
<model>.yaml file, or to distribute this information among different version files:

Single fileMultiple version files
In the <model>.yaml, use a choose_ switch (see Switches (choose_))
to modify the default information that you added in step 7 to meet the requirements for each
specific version. For example, each different version has its own git branch:

choose_version:
 "1.0.0":
 branch: "1.0.0"
 "1.0.1":
 branch: "1.0.1"
 "1.0.2":
 branch: "develop"

	Create a yaml file per version or group of versions. The name of these files should
be the same as the ones in the available_versions section, in the main
<model>.yaml file or, in the case of a file containing a group of versions, the
shared name among the versions (i.e. fesom-2.0.yaml):

$ touch <PATH>/esm_tools/configs/<model>/<model-version>.yaml

	Open the version file with your favourite editor and include the version specific
changes. For example, you want that the version 1.0.2 from your model pulls from
the develop git branch, instead of from the default branch. Then you add to the
<model>-1.0.2.yaml version file:

branch: "develop"

Another example is the fesom-2.0.yaml. While fesom.yaml needs to contain all
available_versions, the version specific changes are split among fesom.yaml
(including information about versions 1) and fesom-2.0.yaml (including
information about versions 2):

fesom.yamlfesom-2.0.yaml
[...]

available_versions:
- 2.0-o
- 2.0-esm-interface
- '1.4'
- '1.4-recom-mocsy-slp'
- 2.0-esm-interface-yac
- 2.0-paleodyn
- 1.4-recom-awicm
- '2.0'
- '2.0-r' # OG: temporarily here
choose_version:
 '1.4-recom-awicm':
 destination: fesom-1.4
 branch: co2_coupling
 '1.4-recom-mocsy-slp':
 branch: fesom-recom-mocsy-slp
 destination: fesom-1.4

[...]

[...]

choose_version:
 '2.0':
 branch: 2.0.2
 git-repository:
 - https://gitlab.dkrz.de/FESOM/fesom2.git
 - github.com/FESOM/fesom2.git
 install_bins: bin/fesom.x
 2.0-esm-interface:
 branch: fesom2_using_esm-interface
 destination: fesom-2.0
 git-repository:
 - https://gitlab.dkrz.de/a270089/fesom-2.0_yac.git
 install_bins: bin/fesom.x

[...]

Note

These are just examples of model configurations, but the parser used by ESM-Tools
to read yaml files (esm_parser) allows for a lot of flexibility in their configuration;
i.e., imagine that the different versions of your model are in different repositories,
instead of in different branches, and their paths to the binaries are also different. Then
you can include the git-repository and install_bins variables inside the corresponding
version case for the choose_version.

	You can now check if esm_master can list and install your model correctly:

$ esm_master

This command should return, without errors, a list of available models and versions including yours.
Then you can actually try installing your model in the desired folder:

$ mkdir ~/model_codes
$ cd ~/model_codes
$ esm_master install-your_model-version

	If everything works correctly you can check that your changes pass flake8:

$ flake8 <PATH>/esm_tools/configs/components/<model>/<model>.yaml

Use this link [https://flake8.pycqa.org/en/latest/index.html] to learn more about flake8
and how to install it.

	Commit your changes, push them to the origin remote repository and submit a pull request
through GitHub (see steps 5-7 in Contribution to esm_tools Package).

Note

You can include all the compiling information inside a compile_infos section to avoid
conflicts with other choose_version switches present in your configuration file.

See also

	ESM-Tools Variables

	Switches (choose_)

	What Is YAML?

Implement a New Coupled Setup

Feature available since version: 4.2

An example of the different files needed for AWICM setup is included at the end of this section
(see Example).

	Make sure the models, couplers and versions you want to use, are already available for esm_master
to install them ($ esm_master and check the list). If something is missing you will need to
add it following the instructions in Implement a New Model.

	Once everything you need is available to esm_master, you will need to create your own branch of
esm_tools, following the steps 1-4 in Contribution to esm_tools Package.

	Setups need two types of files: 1) coupling files containing information about model versions and
coupling changes, and 2) setup files containing the general information about the setup and the
model changes. In this step we focus on the creation of the coupling files.

	Create a folder for your couplings in esm_tools/configs/couplings:

$ cd esm_tools/configs/couplings/
$ mkdir <coupling_name1>
$ mkdir <coupling_name2>
...

The naming convention we follow for the coupling files is
component1-version+component2-version+....

	Create a yaml file inside the coupling folder with the same name:

$ touch <coupling_name1>/<coupling_name1>.yaml

	Include the following information in each coupling file:

components:
- "model1-version"
- "model2-version"
- [...]
- "coupler-version"
coupling_changes:
- sed -i '/MODEL1_PARAMETER/s/OFF/ON/g' model1-1.0/file_to_change
- sed -i '/MODEL2_PARAMETER/s/OFF/ON/g' model2-1.0/file_to_change
- [...]

The components section should list the models and couplers used for the given coupling
including, their required version. The coupling_changes subsection should include a list of
commands to make the necessary changes in the component’s compilation configuration files
(CMakeLists.txt, configure, etc.), for a correct compilation of the coupled setup.

	Now, it is the turn for the creation of the setup file. Create a folder for your coupled setup
inside esm_tools/configs/setups folder, and create a yaml file for your setup:

$ mkdir <PATH>/esm_tools/configs/setups/<your_setup>
$ touch <PATH>/esm_tools/configs/setups/<your_setup>/<setup>.yaml

	Use your favourite text editor to open and edit your <setup>.yaml in the
esm_tools/configs/setups/<your_setup> folder:

$ <your_text_editor> <PATH>/esm_tools/configs/setups/<your_setup>/<setup>.yaml

	Complete the following information about your setup:

###
######################### NAME_VERSION YAML CONFIGURATION FILE ##########################
###

general:
 model: your_setup
 version: "your_setup_version"

 coupled_setup: True

 include_models: # List of models, couplers and componentes of the setup.
 - component_1 # Do not include the version number
 - component_2
 - [...]

Note

Models do not have a general section but in the setups the general
section is mandatory.

	Include the names of the different versions in the available_versions section:

general:

 [...]

 available_versions:
 - "1.0.0"
 - "1.0.1"

The available_versions key is needed for esm_master to list the versions of your setup.

	In the <setup>.yaml, use a choose_ switch (see Switches (choose_))
to assign the coupling files (created in step 3) to their corresponding setup versions:

general:

 [...]

 choose_version:
 "1.0.0":
 couplings:
 - "model1-1.0+model2-1.0"
 "1.0.1":
 couplings:
 - "model1-1.1+model2-1.1"

 [...]

	You can now check if esm_master can list and install your coupled setup correctly:

$ esm_master

This command should return, without errors, a list of available setups and versions including yours.
Then you can actually try installing your setup in the desire folder:

$ mkdir ~/model_codes
$ cd ~/model_codes
$ esm_master install-your_setup-version

	If everything works correctly you can check that your changes pass flake8:

$ flake8 <PATH>/esm_tools/configs/setups/<your_setup>/<setup>.yaml
$ flake8 <PATH>/esm_tools/configs/couplings/<coupling_name>/<coupling_name>.yaml

Use this link [https://flake8.pycqa.org/en/latest/index.html] to learn more about flake8
and how to install it.

	Commit your changes, push them to the origin remote repository and submit a pull request
through GitHub (see steps 5-7 in Contribution to esm_tools Package).

Example

Here you can have a look at relevant snippets of some of the AWICM-1.0 files.

fesom-1.4+echam-6.3.04p1.yamlawicm.yaml
One of the coupling files for AWICM-1.0 (
esm_tools/configs/couplings/fesom-1.4+echam-6.3.04p1/fesom-1.4+echam-6.3.04p1.yaml):

components:
- echam-6.3.04p1
- fesom-1.4
- oasis3mct-2.8
coupling_changes:
- sed -i '/FESOM_COUPLED/s/OFF/ON/g' fesom-1.4/CMakeLists.txt
- sed -i '/ECHAM6_COUPLED/s/OFF/ON/g' echam-6.3.04p1/CMakeLists.txt

Setup file for AWICM (esm_tools/configs/setups/awicm/awicm.yaml):

###
######################### AWICM 1 YAML CONFIGURATION FILE ###############################
###

general:
 model: awicm
 #model_dir: ${esm_master_dir}/awicm-${version}

 coupled_setup: True

 include_models:
 - echam
 - fesom
 - oasis3mct

 version: "1.1"
 scenario: "PI-CTRL"
 resolution: ${echam.resolution}_${fesom.resolution}
 postprocessing: false
 post_time: "00:05:00"
 choose_general.resolution:
 T63_CORE2:
 compute_time: "02:00:00"
 T63_REF87K:
 compute_time: "02:00:00"
 T63_REF:
 compute_time: "02:00:00"
 available_versions:
 - '1.0'
 - '1.0-recom'
 - CMIP6
 choose_version:
 '1.0':
 couplings:
 - fesom-1.4+echam-6.3.04p1
 '1.0-recom':
 couplings:
 - fesom-1.4+recom-2.0+echam-6.3.04p1
 CMIP6:
 couplings:
 - fesom-1.4+echam-6.3.04p1

See also

	ESM-Tools Variables

	Switches (choose_)

	What Is YAML?

Include a New Forcing/Input File

Feature available since version: 4.2

There are several ways of including a new forcing or input file into your experiment
depending on the degree of control you’d like to achieve. An important clarification is
that <forcing/input>_sources file dictionary specifies the sources (paths to
the files in the pools or personal folders, that need to be copied or linked into the
experiment folder). On the other hand <forcing/input>_files specifies which of these
sources are to be included in the experiment. This allows us to have many sources
already available to the user, and then the user can simply choose which of them to use
by chosing from <forcing/input>_files. <forcing/input>_in_work is used to copy
the files into the work folder (<base_dir>/<exp_id>/run_<DATE>/work) if necessary
and change their name. For more technical details see File Dictionaries.

The next sections illustrate some of the many options to handle forcing and input
files.

Source Path Already Defined in a Config File

	Make sure the source of the file is already specified inside the forcing_sources
or input_sources file dictionaries in the configuration file of the setup or
model you are running, or on the further_reading files.

	In your runscript, include the key of the source file you want to include inside
the forcing_files or input_files section.

Note

Note that the key containing the source in the forcing_sources or
input_sources can be different than the key specified in forcing_files or
input_files.

Example

ECHAM
In ECHAM, the source and input file paths are specified in a separate file
(<PATH>/esm_tools/configs/components/echam/echam.datasets.yaml) that
is reached through the further_reading section of the echam.yaml. This
file includes a large number of different sources for input and forcing contained
in the pool directories of the HPC systems Ollie and Mistral. Let’s have a look
at the sst forcing file options available in this file:

forcing_sources:
 # sst
 "amipsst":
 "${forcing_dir}/amip/${resolution}_amipsst_@YEAR@.nc":
 from: 1870
 to: 2016
 "pisst": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.ncy"

This means that from our runscript we will be able to select either amipsst
or pisst as sst forcing files. If you define scenario in ECHAM be
PI-CTRL the correct file source (pisst) is already selected for you.
However, if you would like to select this file manually you can just simply add
the following to your runscript:

forcing_files:
 sst: pisst

Modify the Source of a File

To change the path of the source for a given forcing or input file from your runscript:

	Include the source path under a key inside forcing_sources or
input_sources in your runscript:

<forcing/input>_sources:
 <key_for_your_file>: <path_to_your_file>

If the source is not a single file, but there is a file per year use the @YEAR@
and from: to: functionality in the path to copy only the files corresponding
to that run’s year:

<forcing/input>_sources:
 <key_for_your_source>: <firt_part_of_the_path>@YEAR@<second_part_of_the_path>
 from: <first_year>
 to: <last_year>

	Make sure the key for your path is defined in one of the config files that you are
using, inside of either forcing_files or input_files. If it is not defined
anywhere you will have to include it in your runscript:

<forcing/input>_files:
 <key_for_your_file>: <key_for_your_source>

Copy the file in the work folder and/or rename it

To copy the files from the forcing/input folders into the work folder
(<base_dir>/<exp_id>/run_<DATE>/work) or rename them:

	Make sure your file and its source is defined somewhere (either in the config files
or in your runscript) in <forcing/input>_sources and <forcing/input>_files
(see subsections Source Path Already Defined in a Config File
and Modify the Source of a File).

	In your runscript, add the key to the file you want to copy with value the
same as the key, inside <forcing/input>_in_work:

<forcing/input>_in_work:
 <key_for_your_file>: <key_for_your_file>

	If you want to rename the file set the value to the desired name:

<forcing/input>_in_work:
 <key_for_your_file>: <key_for_your_file>

Example

ECHAM
In ECHAM the sst forcing file depends in the scenario defined by the user:

esm_tools/config/component/echam/echam.datasets.yaml

forcing_sources:
 # sst
 "amipsst":
 "${forcing_dir}/amip/${resolution}_amipsst_@YEAR@.nc":
 from: 1870
 to: 2016
 "pisst": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.nc"

esm_tools/config/component/echam/echam.yaml

choose_scenario:
 "PI-CTRL":
 forcing_files:
 sst: pisst
 [...]

If scenario: "PI-CTRL" then the source selected will be
${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.nc
and the name of the file copied to the experiment forcing folder will be
${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.nc. However,
ECHAM needs this file in the same folder as the binary (the work folder)
under the name unit.20. To copy and rename this file into the work folder
the following lines are used in the echam.yaml configuration file:

forcing_in_work:
 sst: "unit.20"

You can use the same syntax inside your runscript to copy into the work
folder any forcing or input file, and rename it.

See also

	What Is YAML?

	File Dictionaries

Exclude a Forcing/Input File

Feature available since version: 4.2

To exclude one of the predefined forcing or input files from being copied to your
experiment folder:

	Find the key of the file to be excluded inside the config file,
<forcing/input>_files file dictionary.

	In your runscript, use the remove_ functionality to exclude this key from the
<forcing/input>_files file dictionary:

remove_<input/forcing>_files:
 - <key_of_the_file1>
 - <key_of_the_file2>
 - ...

Example

ECHAM
To exclude the sst forcing file from been copied to the experiment folder
include the following lines in your runscript:

remove_forcing_files:
 - sst

See also

	What Is YAML?

	Remove Elements from a List/Dictionary (remove_)

	File Dictionaries

Using your own namelist

Feature available since version: 4.2

Warning

This feature is only recommended if the number of changes that need to be applied to the default
namelist is very large, otherwise we recommend to use the feature namelist_changes (see
Changing Namelist Entries from the Runscript). You can check the default namelists here [https://github.com/esm-tools/esm_tools/tree/release/namelists].

In your runscript, you can instruct ESM-Tools to substitute a given default namelist by a
namelist of your choice.

	Search for the config_sources variable inside the configuration file of the model you are trying to run,
and then, identify the “key” containing the path to the default namelist.

	In your runscript, indented in the corresponding model section, add an add_config_sources section,
containing a variable whose “key” is the one of step 1, and the value is the path of the new namelist.

	Bare in mind, that namelists are first loaded by ESM-Tools, and then modified by the default
namelist_changes in the configuration files. If you want to ignore all those changes for the your new
namelist you’ll need to add remove_namelist_changes: [<name_of_your_namelist>].

In dot notation both steps will look like:
<model_name>.<add_config_sources>.<key_of_the_namelist>: <path_of_your_namelist>
<model_name>.<remove_namelis_changes>: [<name_of_your_namelist>]

Warning

Use step 3 at your own risk! Many of the model specific information and functionality is
transferred to the model through namelist_changes, and therefore, we discourage you from using
remove_namelist_changes unless you have a very deep understanding of the configuration file and the model.
Following Changing Namelist Entries from the Runscript would be a safest solution.

Example

In this example we show how to use an ECHAM namelist.echam and a FESOM namelist.ice that are not
the default ones and omit the namelist_changes present in echam.yaml and fesom.yaml configuration
files.

ECHAMFESOM
Following step 1, search for the config_sources dictionary inside the echam.yaml:

Configuration Files:
config_sources:
 "namelist.echam": "${namelist_dir}/namelist.echam"

In this case the “key” is "namelist.echam" and the “value” is "${namelist_dir}/namelist.echam".
Let’s assume your namelist is in the directory /home/ollie/<usr>/my_namelists. Following step 2,
you will need to include the following in your runscript:

echam:
 add_config_sources:
 "namelist.echam": /home/ollie/<usr>/my_namelists/namelist.echam

If you want to omit the namelist_changes in echam.yaml or any other configuration file
that your model/couple setup is using, you’ll need to add to your runscript
remove_namelist_changes: [namelist.echam] (step 3):

echam:
 add_config_sources:
 "namelist.echam": /home/ollie/<usr>/my_namelists/namelist.echam

 remove_namelist_changes: [namelist.echam]

Warning

Many of the model specific information and functionality is transferred to the model
through namelist_changes, and therefore, we discourage you from using this unless you
have a very deep understanding of the echam.yaml file and the ECHAM model. For example,
using remove_namelist_changes: [namelist.echam] will destroy the following lines in the
echam.yaml:

choose_lresume:
 False:
 restart_in_modifications:
 "[[streams-->STREAM]]":
 - "vdate <--set_global_attr-- ${start_date!syear!smonth!sday}"
 # - fdate "<--set_dim--" ${year_before_date}
 # - ndate "<--set_dim--" ${steps_in_year_before}
 True:
 # pseudo_start_date: $((${start_date} - ${time_step}))
 add_namelist_changes:
 namelist.echam:
 runctl:
 dt_start: "remove_from_namelist"

This lines are relevant for correctly performing restarts, so if
remove_namelist_changes is used, make sure to have the approrpiate commands on your
runscript to remove dt_start from your namelist in case of a restart.

Following step 1, search for the config_sources dictionary inside the fesom.yaml:

config_sources:
 config: "${namelist_dir}/namelist.config"
 forcing: "${namelist_dir}/namelist.forcing"
 ice: "${namelist_dir}/namelist.ice"
 oce: "${namelist_dir}/namelist.oce"
 diag: "${namelist_dir}/namelist.diag"

In this case the “key” is ice and the “value” is ${namelist_dir}/namelist.ice.
Let’s assume your namelist is in the directory /home/ollie/<usr>/my_namelists. Following step 2,
you will need to include the following in your runscript:

fesom:
 add_config_sources:
 ice: "/home/ollie/<usr>/my_namelists/namelist.ice"

If you want to omit the namelist_changes in fesom.yaml or any other configuration file
that your model/couple setup is using, you’ll need to add to your runscript
remove_namelist_changes: [namelist.ice] (step 3):

fesom:
 add_config_sources:
 ice: "/home/ollie/<usr>/my_namelists/namelist.ice"

 remove_namelist_changes: [namelist.ice]

Warning

Many of the model specific information and functionality is transferred to the model
through namelist_changes, and therefore, we discourage you from using this unless you
have a very deep understanding of the fesom.yaml file and the FESOM model.

See also

	Default namelists on GitHub [https://github.com/esm-tools/esm_tools/tree/release/namelists]

	Append to an Existing List (add_)

	Changing Namelists

	What Is YAML?

How to branch-off FESOM from old spinup restart files

When you branch-off from very old FESOM ocean restart files, you may encounter the following runtime error:

read ocean restart file
Error:
NetCDF: Invalid dimension ID or name

This is because the naming of the NetCDF time dimension variable in the restart file has changed from T to time during the development of FESOM and the different FESOM versions.
Therefore, recent versions of FESOM expect the name of the time dimension to be time.

In order to branch-off experiments from spinup restart files that use the old name for the time dimension, you need to rename this dimension before starting the branch-off experiment.

Warning

The following work around will change the restart file permanently. Make sure you do not apply this to the original file.

To rename a dimension variable of a NetCDF file, you can use ncrename:

ncrename -d T,time <copy_of_restart_spinup_file>.nc

where T is the old dimension and time is the new dimension.

See also

	cookbook:How to run a branch-off experiment

Frequently Asked Questions

Installation

	Q: My organization is not in the pull-down list I get when trying the Federated Login to gitlab.awi.de.

A: Then maybe your institution just didn’t join the DFN-AAI. You can check that at https://tools.aai.dfn.de/entities/.

	Q: I am trying to use the Federated Login, and that seems to work fine. When I should be redirected to the gitlab server though, I get the error that my uid is missing.

A: Even though your organization joined the DFN-AAI, gitlab.awi.de needs your organization to deliver information about your institutional e-mail address as part of the identity provided. Please contact the person responsible for shibboleth in your organization.

ESM Runscripts

	Q: I get the error: load_all_functions: not found [No such file or directory] when calling my runscript like this:

$./my_run_script.sh -e some_expid

A: You are trying to call your runscript the old-fashioned way that worked with the shell-script version, until revision 3. With the new python version, you get a new executable esm_runscripts that should be in your PATH already. Call your runscript like this:

$ esm_runscripts my_run_script.sh -e some_expid

All the command line options still apply. By the way, “load_all_function” doesn’t hurt to have in the runscript, but can savely be removed.

	Q: What should I put into the variable FUNCTION_PATH in my runscript, I can’t find the folder functions/all it should point to.

A: You can safely forget about FUNCTION_PATH, which was only needed in the shell script version until revision 3. Either ignore it, or better remove it from the runscript.

	Q: When I try to branch-off from a spinup experiment using FESOM, I get the following runtime error:

read ocean restart file
Error:
NetCDF: Invalid dimension ID or name

A: See How to branch-off FESOM from old spinup restart files.

ESM Master

	Q: How can I define different environments for different models / different versions of the same model?

A: You can add a choose-block in the models yaml-file (esm_tools/configs/model_name.yaml), e.g.:

choose_version:
 40r1:
 environment_changes:
 add_export_vars:
 - 'MY_VAR="something"'
 add_module_actions:
 - load my_own_module

 43r3:
 environment_changes:
 add_export_vars:
 - 'MY_VAR="something_else"'

	Q: How can I add a new model, setup, and coupling strategy to the esm_master tool?

A: Add your configuration in the file configs/esm_master/setups2models.yaml

Frequent Errors

	Q: When I try to install ESM-Tools or use esm_versions I get the following error:

RuntimeError: Click will abort further execution because Python 3 was configured to use ASCII as encoding for the environment. Consult https://click.palletsprojects.com/en/7.x/python3/ for mitigation steps.

or something on the following lines:

 ERROR: Command errored out with exit status 1:
 command: /sw/rhel6-x64/conda/anaconda3-bleeding_edge/bin/python -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-0y687gmq/esm-master/setup.py'"'"'; _file__='"'"'/tmp/pip-install-0y687gmq/esm-master/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, _file__, '"'"'exec'"'"'))' egg_info --egg-base /tmp/pip-install-0y687gmq/esm-master/pip-egg-info
 cwd: /tmp/pip-install-0y687gmq/esm-master/
 Complete output (7 lines):
 Traceback (most recent call last):
 File "<string>", line 1, in <module>
 File "/tmp/pip-install-0y687gmq/esm-master/setup.py", line 8, in <module>
 readme = readme_file.read()
 File "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/encodings/ascii.py", line 26, in decode
 return codecs.ascii_decode(input, self.errors)[0]
 UnicodeDecodeError: 'ascii' codec can't decode byte 0xf0 in position 1468: ordinal not in range(128)
 --
 ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.

A: Some systems have ``C.UTF-8`` as locale default (i.e. ``$LC_ALL``, ``$LANG``). This issue is solved by setting up the locales respectively to ``en_US.UTF-8`` and ``en_US.UTF-8``, either manually or adding them to the local bash configuration file (i.e. ``~/.bash_profile``)::

 $ export LC_ALL=en_US.UTF-8
 $ export LANG=en_US.UTF-8

	Q: How can I add a new model, setup, and coupling strategy to the esm_master tool?

A: Add your configuration in the file configs/esm_master/setups2models.yaml (see contributing:Implementing a New Model and Implement a New Coupled Setup)

Python Packages

The ESM-Tools are divided into a number of python packages / git repositories, both to ensure stability of the code as well as reusability:

esm_tools.git

The only repository to clone by hand by the user, esm_tools.git contains the subfolders

configs: A collection of yaml configuration files, containing all the information needed by the python packages to work properly. This includes machine specific files (e.g. machines/mistral.yaml) , model specific files (e.g fesom/fesom-2.0.yaml), configurations for coupled setups (e.g. foci/foci.yaml), but also files with the information on how a certain software works (batch_systems/slurm.yaml), and finally, how the esm_tools themselves are supposed to work (e.g. esm_master/esm_master.yaml).

esm_master.git

This repository contains the python files that give the esm_master executable in the subfolder esm_master.

esm_runscripts.git

The python package of the esm_runscripts executable. The main routines can be found in esm_runscripts/esm_sim_objects.py.

esm_parser.git

In order to provide the additional functionality to the yaml+ configuration files (like choose blocks, simple math operations, variable expansions etc.). esm_parser is an extension of the pyyaml package, it needs the esm_calendar package to run, but can otherwise easily be used to add yaml+ configurations to any python software.

esm_calendar.git

ESM Tools Code Documentation

	esm_archiving package
	Subpackages
	esm_archiving.database package
	Submodules

	esm_archiving.database.model module

	esm_archiving.database.utils module

	esm_archiving.external package
	Submodules

	esm_archiving.external.pypftp module

	Submodules

	esm_archiving.cli module
	Creating tarballs

	Uploading tarballs

	esm_archiving.config module
	Generating a configuration

	esm_archiving.esm_archiving module

	esm_archiving.database package
	Submodules

	esm_archiving.database.model module

	esm_archiving.database.utils module

	esm_archiving.external package
	Submodules

	esm_archiving.external.pypftp module

	esm_calendar package
	Submodules

	esm_calendar.esm_calendar module

	esm_database package
	Submodules

	esm_database.cli module

	esm_database.esm_database module

	esm_database.getch module

	esm_database.location_database module

	esm_environment package
	Submodules

	esm_environment.esm_environment module

	esm_master package
	Submodules

	esm_master.cli module

	esm_master.compile_info module

	esm_master.database module

	esm_master.database_actions module

	esm_master.esm_master module

	esm_master.general_stuff module

	esm_master.software_package module

	esm_master.task module

	esm_parser package
	Submodules

	esm_parser.esm_parser module

	esm_parser.shell_to_dict module

	esm_parser.yaml_to_dict module

	esm_profile package
	Submodules

	esm_profile.esm_profile module

	esm_rcfile package
	Submodules

	esm_rcfile.esm_rcfile module
	Usage
	API Documentation

	esm_runscripts package
	Submodules

	esm_runscripts.batch_system module

	esm_runscripts.cli module

	esm_runscripts.compute module

	esm_runscripts.coupler module

	esm_runscripts.database module

	esm_runscripts.database_actions module

	esm_runscripts.event_handlers module

	esm_runscripts.filelists module

	esm_runscripts.helpers module

	esm_runscripts.inspect module

	esm_runscripts.last_minute module

	esm_runscripts.methods module

	esm_runscripts.namelists module

	esm_runscripts.oasis module

	esm_runscripts.pbs module

	esm_runscripts.postprocess module

	esm_runscripts.prepare module

	esm_runscripts.prev_run module

	esm_runscripts.sim_objects module

	esm_runscripts.slurm module

	esm_runscripts.tidy module

	esm_runscripts.virtual_env_builder module

	esm_runscripts.yac module

	esm_version_checker package
	Submodules

	esm_version_checker.cli module

esm_archiving package

Top-level package for ESM Archiving.

	
esm_archiving.archive_mistral(tfile, rtfile=None)

	Puts the tfile to the tape archive using tape_command

	Parameters

	
	tfile (str) – The full path of the file to put to tape

	rtfile (str) – The filename on the remote tape server. Defaults to None, in which case
a replacement is performed to keep as much of the filename the same as
possible. Example: /work/ab0246/a270077/experiment.tgz –>
/hpss/arch/ab0246/a270077/experiment.tgz

	Returns

	

	Return type

	None

	
esm_archiving.check_tar_lists(tar_lists)

	

	
esm_archiving.delete_original_data(tfile, force=False)

	Erases data which is found in the tar file.

	Parameters

	
	tfile (str) – Path to the tarfille whose data should be erased.

	force (bool) – If False, asks the user if they really want to delete their files.
Otherwise just does this silently. Default is False

	Returns

	

	Return type

	None

	
esm_archiving.determine_datestamp_location(files)

	Given a list of files; figures where the datestamp is by checking if it
varies.

	Parameters

	files (list) – A list (longer than 1!) of files to check

	Returns

	A slice object giving the location of the datestamp

	Return type

	slice

	Raises

	DatestampLocationError : – Raised if there is more than one slice found where the numbers vary over
 different files -or- if the length of the file list is not longer than 1.

	
esm_archiving.determine_potential_datestamp_locations(filepattern)

	For a filepattern, gives back index of potential date locations

	Parameters

	filepattern (str) – The filepattern to check.

	Returns

	A list of slice object which you can use to cut out dates from the
filepattern

	Return type

	list

	
esm_archiving.find_indices_of(char, in_string)

	Finds indicies of a specific character in a string

	Parameters

	
	char (str) – The character to look for

	in_string (str) – The string to look in

	Yields

	int – Each round of the generator gives you the next index for the desired
character.

	
esm_archiving.get_files_for_date_range(filepattern, start_date, stop_date, frequency, date_format='%Y%m%d')

	Creates a list of files for specified start/stop dates

	Parameters

	
	filepattern (str) – A filepattern to replace dates in

	start_date (str) – The starting date, in a pandas-friendly date format

	stop_date (str) – Ending date, pandas friendly. Note that for end dates, you need to
add one month to assure that you get the last step in your list!

	frequency (str) – Frequency of dates, pandas friendly

	date_format (str) – How dates should be formatted, defaults to %Y%m%d

	Returns

	A list of strings for the filepattern with correct date stamps.

	Return type

	list

Example

>>> filepattern = "LGM_24hourly_PMIP4_echam6_BOT_mm_>>>DATE<<<.nc"
>>> get_files_for_date_range(filepattern, "1890-07", "1891-11", "1M", date_format="%Y%m")
[
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189007.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189008.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189009.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189010.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189011.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189012.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189101.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189102.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189103.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189104.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189105.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189106.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189107.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189108.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189109.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189110.nc",
]

	
esm_archiving.get_list_from_filepattern(filepattern)

	

	
esm_archiving.group_files(top, filetype)

	Generates quasi-regexes for a specific filetype, replacing all numbers with
#.

	Parameters

	
	top (str) – Where to start looking (this should normally be top of the experiment)

	filetype (str) – Which files to go through (e.g. outdata, restart, etc…)

	Returns

	A dictonary containing keys for each folder found in filetype, and
values as lists of files with strings where numbers are replaced by #.

	Return type

	dict

	
esm_archiving.group_indexes(index_list)

	Splits indexes into tuples of monotonically ascending values.

	Parameters

	list – The list to split up

	Returns

	A list of tuples, so that you can get only one group of ascending
tuples.

	Return type

	list

Example

>>> indexes = [0, 1, 2, 3, 12, 13, 15, 16]
>>> group_indexes(indexes)
[(0, 1, 2, 3), (12, 13), (15, 16)]

	
esm_archiving.log_tarfile_contents(tfile)

	Generates a log of the tarball contents

	Parameters

	tfile (str) – The path for the tar file to generate a log for

	Returns

	

	Return type

	None

Warning

Note that for this function to work, you need to have write permission in
the directory where the tarball is located. If not, this will probably
raise an OSError. I can imagine giving the location of the log path as
an argument; but would like to see if that is actually needed before
implementing it…

	
esm_archiving.pack_tarfile(flist, wdir, outname)

	Creates a compressed tarball (outname) with all files found in flist.

	Parameters

	
	flist (list) – A list of files to include in this tarball

	wdir (str) – The directory to “change” to when packing up the tar file. This will
(essentially) be used in the tar command as the -C option by stripping
off the beginning of the flist

	outname (str) – The output file name

	Returns

	The output file name

	Return type

	str

	
esm_archiving.purify_expid_in(model_files, expid, restore=False)

	Puts or restores >>>EXPID<<< marker in filepatterns

	Parameters

	
	model_files (dict) – The model files for archiving

	expid (str) – The experiment ID to purify or restore

	restore (bool) – Set experiment ID back from the temporary marker

	Returns

	Dictionary containing keys for each model, values for file patterns

	Return type

	dict

	
esm_archiving.sort_files_to_tarlists(model_files, start_date, end_date, config)

	

	
esm_archiving.split_list_due_to_size_limit(in_list, slimit)

	

	
esm_archiving.stamp_filepattern(filepattern, force_return=False)

	Transforms # in filepatterns to >>>DATE<<< and replaces other numbers back
to original

	Parameters

	
	filepattern (str) – Filepattern to get date stamps for

	force_return (bool) – Returns the list of filepatterns even if it is longer than 1.

	Returns

	New filepattern, with >>>DATE<<<

	Return type

	str

	
esm_archiving.stamp_files(model_files)

	Given a sttandard file dictioanry (keys: model names, values: filepattern);
figures out where the date probably is, and replaces the # sequence
with a >>>DATE<<< stamp.

	Parameters

	model_files (dict) – Dictionary of keys (model names) where values are lists of files for
each model.

	Returns

	As the input, but replaces the filepatterns with the >>>DATE<<< stamp.

	Return type

	dict

	
esm_archiving.sum_tar_lists(tar_lists)

	Sums up the amount of space in the tar lists dictionary

Given tar_lists, which is generally a dicitonary consisting of keys (model
names) and values (files to be tarred), figures out how much space the
raw, uncompressed files would use. Generally the compressed tarball
will take up less space.

	Parameters

	tar_lists (dict) – Dictionary of file lists to be summed up. Reports every sum as a value
for the key of that particular list.

	Returns

	Keys are the same as in the input, values are the sums (in bytes) of
all files present within the list.

	Return type

	dict

	
esm_archiving.sum_tar_lists_human_readable(tar_lists)

	As sum_tar_lists but gives back strings with human-readable sizes.

Subpackages

	esm_archiving.database package
	Submodules

	esm_archiving.database.model module

	esm_archiving.database.utils module

	esm_archiving.external package
	Submodules

	esm_archiving.external.pypftp module

Submodules

esm_archiving.cli module

After installation, you have a new command in your path:

esm_archive

Passing in the argument --help will show available subcommands:

Usage: esm_archive [OPTIONS] COMMAND [ARGS]...

 Console script for esm_archiving.

Options:
 --version Show the version and exit.
 --write_local_config Write a local configuration YAML file in the current
 working directory
 --write_config Write a global configuration YAML file in
 ~/.config/esm_archiving/
 --help Show this message and exit.

Commands:
 create
 upload

To use the tool, you can first create a tar archive and then use upload
to put it onto the tape server.

Creating tarballs

Use esm_archive create to generate tar files from an experiment:

esm_archive create /path/to/top/of/experiment start_date end_date

The arguments start_date and end_date should take the form
YYYY-MM-DD. A complete example would be:

esm_archive create /work/ab0246/a270077/from_ba0989/AWICM/LGM_6hours 1850-01-01 1851-01-01

The archiving tool will automatically pack up all files it finds matching these
dates in the outdata and restart directories and generate logs in the
top of the experiment folder. Note that the final date (1851-01-1 in this
example) is not included. During packing, you get a progress bar indicating
when the tarball is finished.

Please be aware that are size limits in place on DKRZ’s tape server. Any tar
files larger than 500 Gb will be trucated. For more information, see:
https://www.dkrz.de/up/systems/hpss/hpss

Uploading tarballs

A second command esm_archive upload allows you to put tarballs onto to tape server at DKRZ:

esm_archive upload /path/to/top/of/experiment start_date end_date

The signature is the same as for the create subcommand. Note that for this
to work; you need to have a properly configured .netrc file in your home
directory:

$ cat ~/.netrc
machine tape.dkrz.de login a270077 password OMITTED

This file needs to be readable/writable only for you, e.g. chmod 600.
The archiving program will then be able to automatically log into the tape
server and upload the tarballs. Again, more information about logging onto the
tape server without password authentication can be found here:
https://www.dkrz.de/up/help/faq/hpss/how-can-i-use-the-hpss-tape-archive-without-typing-my-password-every-time-e-g-in-scripts-or-jobs

esm_archiving.config module

When run from either the command line or in library mode (note not as an
ESM Plugin), esm_archiving can be configured to how it looks for specific
files. The configuration file is called esm_archiving_config, should be
written in YAML, and have the following format:

echam: # The model name
 archive: # archive seperator **required**
 # Frequency specification (how often
 # a datestamp is generated to look for)
 frequency: "1M"
 # Date format specification
 date_format: "%Y%m"

By default, esm_archive looks in the following locations:

	Current working directory

	
	Any files in the XDG Standard:
	https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

If nothing is found, the program reverts to the hard-coded defaults, found in
esm_archiving/esm_archiving/config.py

Note

In future, it might be changed that the program will look for an experiment
specific configuration based upon the path it is given during the
create or upload step.

Generating a configuration

You can use the command line switches --write_local_config and
--write_config to generate configuration files either in the current
working directory, or in the global directory for your user account defined by
the XDG standard (typically ~/.config/esm_archiving):

$ esm_archive --write_local_config
Writing local (experiment) configuration...

$ esm_archive --write_config
Writing global (user) configuration...

	
esm_archiving.config.load_config()

	Loads the configuration from one of the default configuration directories.
If none can be found, returns the hard-coded default configuration.

	Returns

	A representation of the configuration used for archiving.

	Return type

	dict

	
esm_archiving.config.write_config_yaml(path=None)

	

esm_archiving.esm_archiving module

This is the esm_archiving module.

	
exception esm_archiving.esm_archiving.DatestampLocationError

	Bases: Exception

	
esm_archiving.esm_archiving.archive_mistral(tfile, rtfile=None)

	Puts the tfile to the tape archive using tape_command

	Parameters

	
	tfile (str) – The full path of the file to put to tape

	rtfile (str) – The filename on the remote tape server. Defaults to None, in which case
a replacement is performed to keep as much of the filename the same as
possible. Example: /work/ab0246/a270077/experiment.tgz –>
/hpss/arch/ab0246/a270077/experiment.tgz

	Returns

	

	Return type

	None

	
esm_archiving.esm_archiving.check_tar_lists(tar_lists)

	

	
esm_archiving.esm_archiving.delete_original_data(tfile, force=False)

	Erases data which is found in the tar file.

	Parameters

	
	tfile (str) – Path to the tarfille whose data should be erased.

	force (bool) – If False, asks the user if they really want to delete their files.
Otherwise just does this silently. Default is False

	Returns

	

	Return type

	None

	
esm_archiving.esm_archiving.determine_datestamp_location(files)

	Given a list of files; figures where the datestamp is by checking if it
varies.

	Parameters

	files (list) – A list (longer than 1!) of files to check

	Returns

	A slice object giving the location of the datestamp

	Return type

	slice

	Raises

	DatestampLocationError : – Raised if there is more than one slice found where the numbers vary over
 different files -or- if the length of the file list is not longer than 1.

	
esm_archiving.esm_archiving.determine_potential_datestamp_locations(filepattern)

	For a filepattern, gives back index of potential date locations

	Parameters

	filepattern (str) – The filepattern to check.

	Returns

	A list of slice object which you can use to cut out dates from the
filepattern

	Return type

	list

	
esm_archiving.esm_archiving.find_indices_of(char, in_string)

	Finds indicies of a specific character in a string

	Parameters

	
	char (str) – The character to look for

	in_string (str) – The string to look in

	Yields

	int – Each round of the generator gives you the next index for the desired
character.

	
esm_archiving.esm_archiving.get_files_for_date_range(filepattern, start_date, stop_date, frequency, date_format='%Y%m%d')

	Creates a list of files for specified start/stop dates

	Parameters

	
	filepattern (str) – A filepattern to replace dates in

	start_date (str) – The starting date, in a pandas-friendly date format

	stop_date (str) – Ending date, pandas friendly. Note that for end dates, you need to
add one month to assure that you get the last step in your list!

	frequency (str) – Frequency of dates, pandas friendly

	date_format (str) – How dates should be formatted, defaults to %Y%m%d

	Returns

	A list of strings for the filepattern with correct date stamps.

	Return type

	list

Example

>>> filepattern = "LGM_24hourly_PMIP4_echam6_BOT_mm_>>>DATE<<<.nc"
>>> get_files_for_date_range(filepattern, "1890-07", "1891-11", "1M", date_format="%Y%m")
[
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189007.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189008.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189009.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189010.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189011.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189012.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189101.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189102.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189103.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189104.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189105.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189106.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189107.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189108.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189109.nc",
 "LGM_24hourly_PMIP4_echam6_BOT_mm_189110.nc",
]

	
esm_archiving.esm_archiving.get_list_from_filepattern(filepattern)

	

	
esm_archiving.esm_archiving.group_files(top, filetype)

	Generates quasi-regexes for a specific filetype, replacing all numbers with
#.

	Parameters

	
	top (str) – Where to start looking (this should normally be top of the experiment)

	filetype (str) – Which files to go through (e.g. outdata, restart, etc…)

	Returns

	A dictonary containing keys for each folder found in filetype, and
values as lists of files with strings where numbers are replaced by #.

	Return type

	dict

	
esm_archiving.esm_archiving.group_indexes(index_list)

	Splits indexes into tuples of monotonically ascending values.

	Parameters

	list – The list to split up

	Returns

	A list of tuples, so that you can get only one group of ascending
tuples.

	Return type

	list

Example

>>> indexes = [0, 1, 2, 3, 12, 13, 15, 16]
>>> group_indexes(indexes)
[(0, 1, 2, 3), (12, 13), (15, 16)]

	
esm_archiving.esm_archiving.log_tarfile_contents(tfile)

	Generates a log of the tarball contents

	Parameters

	tfile (str) – The path for the tar file to generate a log for

	Returns

	

	Return type

	None

Warning

Note that for this function to work, you need to have write permission in
the directory where the tarball is located. If not, this will probably
raise an OSError. I can imagine giving the location of the log path as
an argument; but would like to see if that is actually needed before
implementing it…

	
esm_archiving.esm_archiving.pack_tarfile(flist, wdir, outname)

	Creates a compressed tarball (outname) with all files found in flist.

	Parameters

	
	flist (list) – A list of files to include in this tarball

	wdir (str) – The directory to “change” to when packing up the tar file. This will
(essentially) be used in the tar command as the -C option by stripping
off the beginning of the flist

	outname (str) – The output file name

	Returns

	The output file name

	Return type

	str

	
esm_archiving.esm_archiving.purify_expid_in(model_files, expid, restore=False)

	Puts or restores >>>EXPID<<< marker in filepatterns

	Parameters

	
	model_files (dict) – The model files for archiving

	expid (str) – The experiment ID to purify or restore

	restore (bool) – Set experiment ID back from the temporary marker

	Returns

	Dictionary containing keys for each model, values for file patterns

	Return type

	dict

	
esm_archiving.esm_archiving.query_yes_no(question, default='yes')

	Ask a yes/no question via input() and return their answer.

“question” is a string that is presented to the user.
“default” is the presumed answer if the user just hits <Enter>.

It must be “yes” (the default), “no” or None (meaning an answer is
required of the user).

The “answer” return value is True for “yes” or False for “no”.

Note: Shamelessly stolen from StackOverflow It’s not hard to implement, but
Paul is lazy…

	Parameters

	
	question (str) – The question you’d like to ask the user

	default (str) – The presumed answer for question. Defaults to “yes”.

	Returns

	True if the user said yes, False if the use said no.

	Return type

	bool

	
esm_archiving.esm_archiving.run_command(command)

	Runs command and directly prints output to screen.

	Parameters

	command (str) – The command to run, with pipes, redirects, whatever

	Returns

	rc – The return code of the subprocess.

	Return type

	int

	
esm_archiving.esm_archiving.sort_files_to_tarlists(model_files, start_date, end_date, config)

	

	
esm_archiving.esm_archiving.split_list_due_to_size_limit(in_list, slimit)

	

	
esm_archiving.esm_archiving.stamp_filepattern(filepattern, force_return=False)

	Transforms # in filepatterns to >>>DATE<<< and replaces other numbers back
to original

	Parameters

	
	filepattern (str) – Filepattern to get date stamps for

	force_return (bool) – Returns the list of filepatterns even if it is longer than 1.

	Returns

	New filepattern, with >>>DATE<<<

	Return type

	str

	
esm_archiving.esm_archiving.stamp_files(model_files)

	Given a sttandard file dictioanry (keys: model names, values: filepattern);
figures out where the date probably is, and replaces the # sequence
with a >>>DATE<<< stamp.

	Parameters

	model_files (dict) – Dictionary of keys (model names) where values are lists of files for
each model.

	Returns

	As the input, but replaces the filepatterns with the >>>DATE<<< stamp.

	Return type

	dict

	
esm_archiving.esm_archiving.sum_tar_lists(tar_lists)

	Sums up the amount of space in the tar lists dictionary

Given tar_lists, which is generally a dicitonary consisting of keys (model
names) and values (files to be tarred), figures out how much space the
raw, uncompressed files would use. Generally the compressed tarball
will take up less space.

	Parameters

	tar_lists (dict) – Dictionary of file lists to be summed up. Reports every sum as a value
for the key of that particular list.

	Returns

	Keys are the same as in the input, values are the sums (in bytes) of
all files present within the list.

	Return type

	dict

	
esm_archiving.esm_archiving.sum_tar_lists_human_readable(tar_lists)

	As sum_tar_lists but gives back strings with human-readable sizes.

esm_archiving.database package

The database module for archiving.

The database extension allows you keep track of which experiments are on the
tape, which files are in which tarball, along with some experiment meta-data.

Submodules

esm_archiving.database.model module

The database module for archiving.

The database extension allows you keep track of which experiments are on the
tape, which files are in which tarball, along with some experiment meta-data.

	
class esm_archiving.database.model.Archive(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
exp_ref

	

	
expid_id

	

	
id

	

	
tarballs

	

	
class esm_archiving.database.model.ArchivedFile(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
fname

	

	
id

	

	
on_disk

	

	
on_tape

	

	
tarball

	

	
tarball_id

	

	
class esm_archiving.database.model.Experiments(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
archive

	

	
created_at

	

	
expid

	

	
id

	

	
class esm_archiving.database.model.Tarball(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
archive

	

	
archive_id

	

	
files

	

	
fname

	

	
id

	

esm_archiving.database.utils module

esm_archiving.external package

Submodules

esm_archiving.external.pypftp module

	
class esm_archiving.external.pypftp.Pftp(username=None, password=None)

	Bases: object

	
HOST = 'tape.dkrz.de'

	

	
PORT = 4021

	

	
close()

	

	
cwd(path)

	change working directory

	
directories(path=None)

	gather directories at the given path

	
static download(source, destination)

	uses pftp binary for transfering the file

	
exists(path)

	check if a path exists

	
files(path=None)

	gather files at the given path

	
is_connected()

	check if the connection is still active

	
isdir(pathname)

	Returns true if pathname refers to an existing directory

	
isfile(pathname)

	Returns true if pathname refers to an existing file

	
islink(pathname)

	

	
listdir(path=None)

	list directory contents

	
listing(path=None)

	list directory contents

	
listing2(path=None)

	directory listing in long form. similar to “ls -l”

	
makedirs(path)

	Recursively create dirs as required walking up to an existing
parent dir

	
mkdir(path)

	

	
mlsd(path)

	

	
pwd()

	present working directory

	
quit()

	

	
reconnect()

	reconnects to the ftp server

	
remove(filename)

	

	
removedirs(path)

	

	
rename(from_name, to_name)

	

	
rmdir(path)

	remove directory

	
size(pathname)

	Returns size of path in bytes

	
stat(pathname)

	Returns stat of the path

	
static upload(source, destination)

	uses pftp binary for transfering the file

	
walk(path=None)

	recursively walk the directory tree from the given path. Similar to os.walk

	
walk_for_directories(path=None)

	recursively gather directories

	
walk_for_files(path=None)

	recursively gather files

	
esm_archiving.external.pypftp.download(source, destination)

	

	
esm_archiving.external.pypftp.upload(source, destination)

	

esm_archiving.database package

The database module for archiving.

The database extension allows you keep track of which experiments are on the
tape, which files are in which tarball, along with some experiment meta-data.

Submodules

esm_archiving.database.model module

The database module for archiving.

The database extension allows you keep track of which experiments are on the
tape, which files are in which tarball, along with some experiment meta-data.

	
class esm_archiving.database.model.Archive(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
exp_ref

	

	
expid_id

	

	
id

	

	
tarballs

	

	
class esm_archiving.database.model.ArchivedFile(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
fname

	

	
id

	

	
on_disk

	

	
on_tape

	

	
tarball

	

	
tarball_id

	

	
class esm_archiving.database.model.Experiments(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
archive

	

	
created_at

	

	
expid

	

	
id

	

	
class esm_archiving.database.model.Tarball(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
archive

	

	
archive_id

	

	
files

	

	
fname

	

	
id

	

esm_archiving.database.utils module

esm_archiving.external package

Submodules

esm_archiving.external.pypftp module

	
class esm_archiving.external.pypftp.Pftp(username=None, password=None)

	Bases: object

	
HOST = 'tape.dkrz.de'

	

	
PORT = 4021

	

	
close()

	

	
cwd(path)

	change working directory

	
directories(path=None)

	gather directories at the given path

	
static download(source, destination)

	uses pftp binary for transfering the file

	
exists(path)

	check if a path exists

	
files(path=None)

	gather files at the given path

	
is_connected()

	check if the connection is still active

	
isdir(pathname)

	Returns true if pathname refers to an existing directory

	
isfile(pathname)

	Returns true if pathname refers to an existing file

	
islink(pathname)

	

	
listdir(path=None)

	list directory contents

	
listing(path=None)

	list directory contents

	
listing2(path=None)

	directory listing in long form. similar to “ls -l”

	
makedirs(path)

	Recursively create dirs as required walking up to an existing
parent dir

	
mkdir(path)

	

	
mlsd(path)

	

	
pwd()

	present working directory

	
quit()

	

	
reconnect()

	reconnects to the ftp server

	
remove(filename)

	

	
removedirs(path)

	

	
rename(from_name, to_name)

	

	
rmdir(path)

	remove directory

	
size(pathname)

	Returns size of path in bytes

	
stat(pathname)

	Returns stat of the path

	
static upload(source, destination)

	uses pftp binary for transfering the file

	
walk(path=None)

	recursively walk the directory tree from the given path. Similar to os.walk

	
walk_for_directories(path=None)

	recursively gather directories

	
walk_for_files(path=None)

	recursively gather files

	
esm_archiving.external.pypftp.download(source, destination)

	

	
esm_archiving.external.pypftp.upload(source, destination)

	

esm_calendar package

Top-level package for ESM Calendar.

Submodules

esm_calendar.esm_calendar module

Module Docstring.,..?

	
class esm_calendar.esm_calendar.Calendar(calendar_type=1)

	Bases: object

Class to contain various types of calendars.

	Parameters

	calendar_type (int) – The type of calendar to use.

Supported calendar types:
0

no leap years

	1
	proleptic greogrian calendar (default)

	n
	equal months of n days

	
timeunits

	A list of accepted time units.

	Type

	list of str

	
monthnames

	A list of valid month names, using 3 letter English abbreviation.

	Type

	list of str

	
isleapyear(year)

	Returns a boolean testing if the given year is a leapyear

	
day_in_year(year):

	Returns the total number of days in a given year

	
day_in_month(year, month):

	Returns the total number of days in a given month for a given year
(considering leapyears)

	
day_in_month(year, month)

	Finds the number of days in a given month

	Parameters

	
	year (int) – The year to check

	month (int or str) – The month number or short name.

	Returns

	The number of days in this month, considering leapyears if needed.

	Return type

	int

	Raises

	TypeError – Raised when you give an incorrect type for month

	
day_in_year(year)

	Finds total number of days in a year, considering leapyears if the
calendar type allows for them.

	Parameters

	year (int) – The year to check

	Returns

	The total number of days for this specific calendar type

	Return type

	int

	
isleapyear(year)

	Checks if a year is a leapyear

	Parameters

	year (int) – The year to check

	Returns

	True if the given year is a leapyear

	Return type

	bool

	
monthnames = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

	

	
timeunits = ['years', 'months', 'days', 'hours', 'minutes', 'seconds']

	

	
class esm_calendar.esm_calendar.Date(indate, calendar=esm_calendar(calendar_type=1))

	Bases: object

A class to contain dates, also compatiable with paleo (negative dates)

	Parameters

	
	indate (str) – The date to use.

See pyesm.core.time_control.esm_calendar.Dateformat for available
formatters.

	calendar (Calendar`, optional) – The type of calendar to use. Defaults to a greogrian proleptic calendar
if nothing is specified.

	
year

	The year

	Type

	int

	
month

	The month

	Type

	int

	
day

	The day

	Type

	int

	
hour

	The hour

	Type

	int

	
minute

	The minute

	Type

	int

	
second

	The second

	Type

	int

	
_calendar

	The type of calendar to use

	Type

	Calendar`

	
add(to_add)

	Adds another date to this one.

	Parameters

	to_add (Date`) – The other date to add to this one.

	Returns

	new_date – A new date object with the added dates

	Return type

	Date`

	
day_of_year()

	Gets the day of the year, counting from Jan. 1

	Returns

	The day of the current year.

	Return type

	int

	
format(form='SELF', givenph=None, givenpm=None, givenps=None)

	Needs a docstring!
The following forms are accepted:
+ SELF: uses the format which was given when constructing the date
+ 0: A Date formated as YYYY

In [5]: test.format(form=1)
Out[5]: ‘1850-01-01_00:00:00’

In [6]: test.format(form=2)
Out[6]: ‘1850-01-01T00:00:00’

In [7]: test.format(form=3)
Out[7]: ‘1850-01-01 00:00:00’

In [8]: test.format(form=4)
Out[8]: ‘1850 01 01 00 00 00’

In [9]: test.format(form=5)
Out[9]: ‘01 Jan 1850 00:00:00’

In [10]: test.format(form=6)
Out[10]: ‘18500101_00:00:00’

In [11]: test.format(form=7)
Out[11]: ‘1850-01-01_000000’

In [12]: test.format(form=8)
Out[12]: ‘18500101000000’

In [13]: test.format(form=9)
Out[13]: ‘18500101_000000’

In [14]: test.format(form=10)
Out[14]: ‘01/01/1850 00:00:00’

	
classmethod from_list(_list)

	Creates a new Date from a list

	Parameters

	_list (list of ints) – A list of [year, month, day, hour, minute, second]

	Returns

	date – A new date of year month day, hour minute, second

	Return type

	Date`

	
classmethod fromlist(_list)

	Creates a new Date from a list

	Parameters

	_list (list of ints) – A list of [year, month, day, hour, minute, second]

	Returns

	date – A new date of year month day, hour minute, second

	Return type

	Date`

	
makesense(ndate)

	Puts overflowed time back into the correct unit.

When manipulating the date, it might be that you have “70 seconds”, or
something similar. Here, we put the overflowed time into the
appropriate unit.

	
output(form='SELF')

	

	
property sday

	

	
property sdoy

	

	
property shour

	

	
property sminute

	

	
property smonth

	

	
property ssecond

	

	
sub_date(other)

	

	
sub_tuple(to_sub)

	Adds another date to from one.

	Parameters

	to_sub (Date`) – The other date to sub from this one.

	Returns

	new_date – A new date object with the subtracted dates

	Return type

	Date`

	
property syear

	

	
time_between(date, outformat='seconds')

	Computes the time between two dates

	Parameters

	date (date`) – The date to compare against.

	Returns

	

	Return type

	??

	
class esm_calendar.esm_calendar.Dateformat(form=1, printhours=True, printminutes=True, printseconds=True)

	Bases: object

	
datesep = ['', '-', '-', '-', ' ', ' ', '', '-', '', '', '/']

	

	
dtsep = ['_', '_', 'T', ' ', ' ', ' ', '_', '_', '', '_', ' ']

	

	
timesep = ['', ':', ':', ':', ' ', ':', ':', '', '', '', ':']

	

	
esm_calendar.esm_calendar.date_range(start_date, stop_date, frequency)

	

	
esm_calendar.esm_calendar.find_remaining_hours(seconds)

	Finds the remaining full minutes of a given number of seconds

	Parameters

	seconds (int) – The number of seconds to allocate

	Returns

	The leftover seconds once new minutes have been filled.

	Return type

	int

	
esm_calendar.esm_calendar.find_remaining_minutes(seconds)

	Finds the remaining full minutes of a given number of seconds

	Parameters

	seconds (int) – The number of seconds to allocate

	Returns

	The leftover seconds once new minutes have been filled.

	Return type

	int

esm_database package

Top-level package for ESM Database.

Submodules

esm_database.cli module

A small wrapper that combines the shell interface and the Python interface

	
esm_database.cli.main()

	

	
esm_database.cli.parse_shargs()

	The arg parser for interactive use

esm_database.esm_database module

	
class esm_database.esm_database.DisplayDatabase(tablename=None)

	Bases: object

	
ask_column()

	

	
ask_dataset()

	

	
decision_maker()

	

	
edit_dataset()

	

	
output_writer()

	

	
remove_datasets()

	

	
select_stuff()

	

esm_database.getch module

	
esm_database.getch.get_one_of(testlist)

	

esm_database.location_database module

	
class esm_database.location_database.database_location(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
class_in

	

	
id

	

	
location

	

	
table_name

	

	
static topline()

	

	
esm_database.location_database.register(table_name, given_location, class_in)

	

esm_environment package

Submodules

esm_environment.esm_environment module

esm_master package

Top-level package for ESM Master.

Submodules

esm_master.cli module

esm_master.compile_info module

esm_master.database module

	
class esm_master.database.installation(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

	
action

	

	
folder

	

	
id

	

	
static nicer_output(run)

	

	
setup_name

	

	
timestamp

	

	
static topline()

	

esm_master.database_actions module

	
esm_master.database_actions.database_entry(action, setup_name, base_dir)

	

esm_master.esm_master module

esm_master.general_stuff module

esm_master.software_package module

	
esm_master.software_package.replace_var(var, tag, value)

	

	
class esm_master.software_package.software_package(raw, setup_info, vcs, general, no_infos=False)

	Bases: object

	
complete_targets(setup_info)

	

	
fill_in_infos(setup_info, vcs, general)

	

	
get_command_list(setup_info, vcs, general)

	

	
get_comp_type(setup_info)

	

	
get_coupling_changes(setup_info)

	

	
get_repo_info(setup_info, vcs)

	

	
get_subpackages(setup_info, vcs, general)

	

	
get_targets(setup_info, vcs)

	

	
output()

	

esm_master.task module

esm_parser package

Submodules

esm_parser.esm_parser module

esm_parser.shell_to_dict module

Backwards compatability for old runscripts

	
esm_parser.shell_to_dict.ShellscriptToUserConfig(runscript_path)

	Generates a User Config from an old Shellscript

	
esm_parser.shell_to_dict.mini_recursive_run_func(config, func)

	

	
esm_parser.shell_to_dict.purify_cases(config)

	

	
esm_parser.shell_to_dict.remap_old_new_keys(config)

	

esm_parser.yaml_to_dict module

	
exception esm_parser.yaml_to_dict.EsmConfigFileError(fpath, yaml_error)

	Bases: Exception

Exception for yaml file containing tabs or other syntax issues.

An exception used when yaml.load() throws a yaml.scanner.ScannerError.
This error occurs mainly when there are tabs inside a yaml file or
when the syntax is incorrect. If tabs are found, this exception returns
a user-friendly message indicating where the tabs are located in the
yaml file.

	Parameters

	fpath (str) – Path to the yaml file

	
esm_parser.yaml_to_dict.check_changes_duplicates(yamldict_all, fpath)

	Checks for duplicates and conflicting _changes and add_:

	Finds variables containing _changes (but excluding add_) and checks
if they are compatible with the same _changes inside the same file. If they
are not compatible returns an error where the conflicting variable paths are
specified. More than one _changes type in a file are allowed but they need
to be part of the same _choose and not be accessible simultaneously in any
situation.

	Checks if there is any variable containing add_ in the main sections of
a file and labels it as incompatible if the same variable is found inside a
choose_ block. add_<variable>``s are compatible as long as they are inside
``choose_ blocks, but if you want to include something as a default, please just
do it inside the <variable>.

Warning

add_<variable>``s are not checked for incompatibility when they
are included inside ``choose_ blocks. Merging of these add_<variable>``s
is done using ``deep_update, meaning that the merge is arbitrary (i.e. if
two choose_ blocks are modifying the same variable using add_, the
final value would be decided arbitrarily). It is up to the developer/user to
make good use of add_``s inside ``choose_ blocks.

	Parameters

	
	yamldict_all (dict) – Dictionary read from the yaml file

	fpath (str) – Path to the yaml file

	
esm_parser.yaml_to_dict.check_duplicates(src)

	Checks that there are no duplicates in a yaml file, and if there are
returns an error stating which key is repeated and in which file the
duplication occurs.

	Parameters

	
	src (object) – Source file object

	Exceptions –

	---------- –

	ConstructorError – If duplicated keys are found, returns an error

	
esm_parser.yaml_to_dict.create_env_loader(tag='!ENV', loader=<class 'yaml.loader.SafeLoader'>)

	

	
esm_parser.yaml_to_dict.find_last_choose(var_path)

	Locates the last choose_ on a string containing the path to a
variable separated by “,”, and returns the path to the choose_
(also separated by “,”) and the case that follows the choose_.

	Parameters

	var_path (str) – String containing the path to the last choose_ separated by
“,”.

	Returns

	
	path2choose (str) – Path to the last choose_.

	case (str) – Case after the choose.

	
esm_parser.yaml_to_dict.yaml_file_to_dict(filepath)

	Given a yaml file, returns a corresponding dictionary.

If you do not give an extension, tries again after appending one.
It raises an EsmConfigFileError exception if yaml files contain tabs.

	Parameters

	filepath (str) – Where to get the YAML file from

	Returns

	A dictionary representation of the yaml file.

	Return type

	dict

	Raises

	
	EsmConfigFileError – Raised when YAML file contains tabs or other syntax issues.

	FileNotFoundError – Raised when the YAML file cannot be found and all extensions have been tried.

esm_profile package

Top-level package for ESM Profile.

Submodules

esm_profile.esm_profile module

	
esm_profile.esm_profile.timing(f)

	

esm_rcfile package

Top-level package for ESM RCFile.

Submodules

esm_rcfile.esm_rcfile module

Usage

This package contains functions to set, get, and use entries stored in the
esmtoolsrc file.

To use ESM RCFile in a project:

import esm_rcfile

You can set specific values in the ~/.esmtoolsrc with:

set_rc_entry(key, value)

For example:

>>> set_rc_entry("SCOPE_CONFIG", "/pf/a/a270077/Code/scope/configs/")

Retriving an entry:

>>> fpath = get_rc_entry("FUNCTION_PATH")
>>> print(fpath)
/pf/a/a270077/Code/esm_tools/esm_tools/configs

With a default value for a non-existing key:

>>> scope_config = get_rc_entry("SCOPE_CONFIG", "/dev/null")
>>> print(scope_config)
/dev/null

Without a default value, you get EsmRcfileError:

>>> echam_namelist = get_rc_entry("ECHAM_NMLDIR")
EsmRcFileError: No value for ECHAM_NMLDIR found in esmtoolsrc file!!

This error is also raised if there is no ~/.esmtoolsrc file, and no default
is provided.

You can also get the entire rcfile as a dict:

>>> rcdict = import_rc_file()

API Documentation

	
exception esm_rcfile.esm_rcfile.EsmRcfileError

	Bases: Exception

	
class esm_rcfile.esm_rcfile.EsmToolsDir(path_type)

	Bases: str

A string subclass whose instances provide the paths to esm_tools folders
(configs, namelists and runscripts) when evaluated as a string (i.e.
str(<your_instance>) or <your_instance> + <a_string>).

This class is thought as a generalised solution for the problem of removing the
FUNCTION_PATH, NAMELIST_PATH and RUNSCRIPT_PATH from the .esmtoolsrc file,
and intends to provide those paths correctly, both for virtual environment and open
runs, right at the time where the variable containing the instance is evaluated
by the esm_parser, as a string.

This should solve issues with, for example, preprocessing and postprocessing scripts
called during runtime with a NONE_YET/<path_to_the_script>.

	
find_path()

	This method returns the path of the esm_tools folder required.

	Returns

	<esm_tools_folder_type_PATH> – The path to the required folder.

	Return type

	str

	
esm_rcfile.esm_rcfile.get_rc_entry(key, default=None)

	Gets a specific entry

	Parameters

	
	key (str) –

	default (str) –

	Returns

	Value for key, or default if provided

	Return type

	str

	Raises

	EsmRcfileError –
	Raised if key cannot be found in the rcfile and no default is
 provided
 * Raised if the esmtoolsrc file cannot be found and no default is
 provided.

	
esm_rcfile.esm_rcfile.import_rc_file()

	Gets current values of the esmtoolsrc file

	Returns

	A dictionary representation of the rcfile

	Return type

	dict

	
esm_rcfile.esm_rcfile.set_rc_entry(key, value)

	Sets values in esmtoolsrc

	Parameters

	
	key (str) –

	value (str) –

Note

Using this functions modifies the rcfile; which is stored in the
current user’s home directory.

esm_runscripts package

Submodules

esm_runscripts.batch_system module

esm_runscripts.cli module

esm_runscripts.compute module

esm_runscripts.coupler module

esm_runscripts.database module

esm_runscripts.database_actions module

esm_runscripts.event_handlers module

esm_runscripts.filelists module

esm_runscripts.helpers module

esm_runscripts.inspect module

esm_runscripts.last_minute module

esm_runscripts.methods module

esm_runscripts.namelists module

esm_runscripts.oasis module

esm_runscripts.pbs module

esm_runscripts.postprocess module

esm_runscripts.prepare module

esm_runscripts.prev_run module

esm_runscripts.sim_objects module

esm_runscripts.slurm module

esm_runscripts.tidy module

esm_runscripts.virtual_env_builder module

esm_runscripts.yac module

esm_version_checker package

esm_version_checker - Mini package to check versions of diverse esm_tools software

Submodules

esm_version_checker.cli module

Console script for esm_version_checker.

	
class esm_version_checker.cli.GlobalVars

	Bases: object

A struct-like class for holding the global variables. GlobalVars
instance should only be updated by the main function and should be
‘read-only’ by the other functions

	
from_github

	top-level command-line option flag for connecting to the GitHub repo

	Type

	bool

	
esm_tools_github_url

	repository URL of the ESM-Tools

	Type

	str

	
esm_tools_installed

	each key is the specidif ESM-Tools package and value is bool

	Type

	dict

	
esm_tools_github_url = 'https://github.com/esm-tools/'

	

	
esm_tools_installed = {}

	

	
from_github = False

	

	
esm_version_checker.cli.check_importable_tools()

	

	
esm_version_checker.cli.dist_is_editable(dist)

	Is distribution an editable install?

	
esm_version_checker.cli.editable_dist_location(dist)

	Determines where an editable dist is installed

	
esm_version_checker.cli.get_esm_package_attributes(tool)

	Gets the attributes of the ESM-Tools package

	Parameters

	tool (str) – name of the ESM-Tools package

	Returns

	attr_dict – dictionary of attributes.

	Return type

	dict

	
esm_version_checker.cli.get_esm_packages()

	Gets the list of the installed ESM-Tools packages either locally or from
the GitHub repository

	Returns

	esm_tools_modules – list of strings where each item corresponds to a ESM-Tools package name

	Return type

	list

	
esm_version_checker.cli.global_options_decorator(func)

	decorator function for the global option

	
esm_version_checker.cli.pip_install(package)

	

	
esm_version_checker.cli.pip_or_pull(tool, version=None)

	

	
esm_version_checker.cli.pip_uninstall(package)

	

	
esm_version_checker.cli.pip_upgrade(package, version=None)

	

	
esm_version_checker.cli.report_single_package(package, version, file_path, branch, describe)

	Nice output similar to the tree command in Linux

	
esm_version_checker.cli.user_owns(binary)

	True or False if user owns binary

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/esm-tools/esm_tools/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

ESM Tools could always use more documentation, whether as part of the
official ESM Tools docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/esm-tools/esm_tools/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up esm-tools packages for local development (see Python Packages for a list of available packages). Note that the procedure of contributing to the esm_tools package (see Contribution to esm_tools Package) is different from the one to contribute to the other packages (Contribution to Other Packages).

Contribution to esm_tools Package

	Fork the esm_tools repo on GitHub.

	Clone your fork locally:

$ git clone https://github.com/esm-tools/esm_tools.git

(or whatever subproject you want to contribute to).

	By default, git clone will give you the release branch of the project. You might want to consider checking out the development branch, which might not always be as stable, but usually more up-to-date than the release branch:

$ git checkout develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8:

$ flake8 esm_tools

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Contribution to Other Packages

	Follow steps 1-4 in Contribution to esm_tools Package
for the desired package, cloning your fork locally with:

$ git clone https://github.com/esm-tools/<PACKAGE>.git

	Proceed to do a development install of the package in the package’s folder:

$ cd <package's_folder>
$ pip install -e .

	From now on when binaries are called, they will refer to the source code you are working
on, located in your local package’s folder. For example, if you are editing the
package esm_master located in ~/esm_master and you run $ esm_master install-fesom-2.0
you’ll be using the edited files in ~/esm_master to install FESOM 2.0.

	Follow steps 5-7 in Contribution to esm_tools Package.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/dbarbi/esm_tools/pull_requests
and make sure that the tests pass for all supported Python versions.

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Credits

Development Lead

	Dirk Barbi <dirk.barbi@awi.de>

	Paul Gierz <paul.gierz@awi.de>

	Nadine Wieters <nadine.wieters@awi.de>

	Miguel Andrés-Martínez <miguel.andres-martinez@awi.de>

	Deniz Ural <deniz.ural@awi.de>

Project Management

	Luisa Cristini <luisa.cristini@awi.de>

Contributors

	Sara Khosravi <sara.khosravi@awi.de>

	Fatemeh Chegini <fatemeh.chegini@mpimet.mpg.de>

	Joakim Kjellsson <jkjellsson@geomar.de>

	Sebastian Wahl <swahl@geomar.de>

	…

Beta Testers

	Tido Semmler <tido.semmler@awi.de>

	Christopher Danek <christopher.danek@awi.de>

	…

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 esm_archiving	

 	
 	
 esm_archiving.cli	

 	
 	
 esm_archiving.config	

 	
 	
 esm_archiving.database	

 	
 	
 esm_archiving.database.model	

 	
 	
 esm_archiving.esm_archiving	

 	
 	
 esm_archiving.external	

 	
 	
 esm_archiving.external.pypftp	

 	[image: -]
 	
 esm_calendar	

 	
 	
 esm_calendar.esm_calendar	

 	[image: -]
 	
 esm_database	

 	
 	
 esm_database.cli	

 	
 	
 esm_database.esm_database	

 	
 	
 esm_database.getch	

 	
 	
 esm_database.location_database	

 	[image: -]
 	
 esm_master	

 	
 	
 esm_master.database	

 	
 	
 esm_master.database_actions	

 	
 	
 esm_master.software_package	

 	[image: -]
 	
 esm_parser	

 	
 	
 esm_parser.shell_to_dict	

 	
 	
 esm_parser.yaml_to_dict	

 	[image: -]
 	
 esm_profile	

 	
 	
 esm_profile.esm_profile	

 	[image: -]
 	
 esm_rcfile	

 	
 	
 esm_rcfile.esm_rcfile	

 	[image: -]
 	
 esm_version_checker	

 	
 	
 esm_version_checker.cli	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | Y

_

 	
 	_calendar (esm_calendar.esm_calendar.Date attribute)

A

 	
 	action (esm_master.database.installation attribute)

 	add() (esm_calendar.esm_calendar.Date method)

 	Archive (class in esm_archiving.database.model)

 	archive (esm_archiving.database.model.Experiments attribute)

 	(esm_archiving.database.model.Tarball attribute)

 	
 	archive_id (esm_archiving.database.model.Tarball attribute)

 	archive_mistral() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	ArchivedFile (class in esm_archiving.database.model)

 	ask_column() (esm_database.esm_database.DisplayDatabase method)

 	ask_dataset() (esm_database.esm_database.DisplayDatabase method)

C

 	
 	Calendar (class in esm_calendar.esm_calendar)

 	check_changes_duplicates() (in module esm_parser.yaml_to_dict)

 	check_duplicates() (in module esm_parser.yaml_to_dict)

 	check_importable_tools() (in module esm_version_checker.cli)

 	check_tar_lists() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	
 	class_in (esm_database.location_database.database_location attribute)

 	close() (esm_archiving.external.pypftp.Pftp method)

 	complete_targets() (esm_master.software_package.software_package method)

 	create_env_loader() (in module esm_parser.yaml_to_dict)

 	created_at (esm_archiving.database.model.Experiments attribute)

 	cwd() (esm_archiving.external.pypftp.Pftp method)

D

 	
 	database_entry() (in module esm_master.database_actions)

 	database_location (class in esm_database.location_database)

 	Date (class in esm_calendar.esm_calendar)

 	date_range() (in module esm_calendar.esm_calendar)

 	Dateformat (class in esm_calendar.esm_calendar)

 	datesep (esm_calendar.esm_calendar.Dateformat attribute)

 	DatestampLocationError

 	day (esm_calendar.esm_calendar.Date attribute)

 	day_in_month() (esm_calendar.esm_calendar.Calendar method)

 	day_in_year() (esm_calendar.esm_calendar.Calendar method)

 	day_of_year() (esm_calendar.esm_calendar.Date method)

 	decision_maker() (esm_database.esm_database.DisplayDatabase method)

 	
 	delete_original_data() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	determine_datestamp_location() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	determine_potential_datestamp_locations() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	directories() (esm_archiving.external.pypftp.Pftp method)

 	DisplayDatabase (class in esm_database.esm_database)

 	dist_is_editable() (in module esm_version_checker.cli)

 	download() (esm_archiving.external.pypftp.Pftp static method)

 	(in module esm_archiving.external.pypftp)

 	dtsep (esm_calendar.esm_calendar.Dateformat attribute)

E

 	
 	edit_dataset() (esm_database.esm_database.DisplayDatabase method)

 	editable_dist_location() (in module esm_version_checker.cli)

 	
 esm_archiving

 	module

 	
 esm_archiving.cli

 	module

 	
 esm_archiving.config

 	module

 	
 esm_archiving.database

 	module

 	
 esm_archiving.database.model

 	module

 	
 esm_archiving.esm_archiving

 	module

 	
 esm_archiving.external

 	module

 	
 esm_archiving.external.pypftp

 	module

 	
 esm_calendar

 	module

 	
 esm_calendar.esm_calendar

 	module

 	
 esm_database

 	module

 	
 esm_database.cli

 	module

 	
 esm_database.esm_database

 	module

 	
 esm_database.getch

 	module

 	
 esm_database.location_database

 	module

 	
 esm_master

 	module

 	
 	
 esm_master.database

 	module

 	
 esm_master.database_actions

 	module

 	
 esm_master.software_package

 	module

 	
 esm_parser.shell_to_dict

 	module

 	
 esm_parser.yaml_to_dict

 	module

 	
 esm_profile

 	module

 	
 esm_profile.esm_profile

 	module

 	
 esm_rcfile

 	module

 	
 esm_rcfile.esm_rcfile

 	module

 	esm_tools_github_url (esm_version_checker.cli.GlobalVars attribute), [1]

 	esm_tools_installed (esm_version_checker.cli.GlobalVars attribute), [1]

 	
 esm_version_checker

 	module

 	
 esm_version_checker.cli

 	module

 	EsmConfigFileError

 	EsmRcfileError

 	EsmToolsDir (class in esm_rcfile.esm_rcfile)

 	exists() (esm_archiving.external.pypftp.Pftp method)

 	exp_ref (esm_archiving.database.model.Archive attribute)

 	Experiments (class in esm_archiving.database.model)

 	expid (esm_archiving.database.model.Experiments attribute)

 	expid_id (esm_archiving.database.model.Archive attribute)

F

 	
 	files (esm_archiving.database.model.Tarball attribute)

 	files() (esm_archiving.external.pypftp.Pftp method)

 	fill_in_infos() (esm_master.software_package.software_package method)

 	find_indices_of() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	find_last_choose() (in module esm_parser.yaml_to_dict)

 	find_path() (esm_rcfile.esm_rcfile.EsmToolsDir method)

 	find_remaining_hours() (in module esm_calendar.esm_calendar)

 	
 	find_remaining_minutes() (in module esm_calendar.esm_calendar)

 	fname (esm_archiving.database.model.ArchivedFile attribute)

 	(esm_archiving.database.model.Tarball attribute)

 	folder (esm_master.database.installation attribute)

 	format() (esm_calendar.esm_calendar.Date method)

 	from_github (esm_version_checker.cli.GlobalVars attribute), [1]

 	from_list() (esm_calendar.esm_calendar.Date class method)

 	fromlist() (esm_calendar.esm_calendar.Date class method)

G

 	
 	get_command_list() (esm_master.software_package.software_package method)

 	get_comp_type() (esm_master.software_package.software_package method)

 	get_coupling_changes() (esm_master.software_package.software_package method)

 	get_esm_package_attributes() (in module esm_version_checker.cli)

 	get_esm_packages() (in module esm_version_checker.cli)

 	get_files_for_date_range() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	get_list_from_filepattern() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	get_one_of() (in module esm_database.getch)

 	
 	get_rc_entry() (in module esm_rcfile.esm_rcfile)

 	get_repo_info() (esm_master.software_package.software_package method)

 	get_subpackages() (esm_master.software_package.software_package method)

 	get_targets() (esm_master.software_package.software_package method)

 	global_options_decorator() (in module esm_version_checker.cli)

 	GlobalVars (class in esm_version_checker.cli)

 	group_files() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	group_indexes() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

H

 	
 	HOST (esm_archiving.external.pypftp.Pftp attribute)

 	
 	hour (esm_calendar.esm_calendar.Date attribute)

I

 	
 	id (esm_archiving.database.model.Archive attribute)

 	(esm_archiving.database.model.ArchivedFile attribute)

 	(esm_archiving.database.model.Experiments attribute)

 	(esm_archiving.database.model.Tarball attribute)

 	(esm_database.location_database.database_location attribute)

 	(esm_master.database.installation attribute)

 	
 	import_rc_file() (in module esm_rcfile.esm_rcfile)

 	installation (class in esm_master.database)

 	is_connected() (esm_archiving.external.pypftp.Pftp method)

 	isdir() (esm_archiving.external.pypftp.Pftp method)

 	isfile() (esm_archiving.external.pypftp.Pftp method)

 	isleapyear() (esm_calendar.esm_calendar.Calendar method), [1]

 	islink() (esm_archiving.external.pypftp.Pftp method)

L

 	
 	listdir() (esm_archiving.external.pypftp.Pftp method)

 	listing() (esm_archiving.external.pypftp.Pftp method)

 	listing2() (esm_archiving.external.pypftp.Pftp method)

 	
 	load_config() (in module esm_archiving.config)

 	location (esm_database.location_database.database_location attribute)

 	log_tarfile_contents() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

M

 	
 	main() (in module esm_database.cli)

 	makedirs() (esm_archiving.external.pypftp.Pftp method)

 	makesense() (esm_calendar.esm_calendar.Date method)

 	mini_recursive_run_func() (in module esm_parser.shell_to_dict)

 	minute (esm_calendar.esm_calendar.Date attribute)

 	mkdir() (esm_archiving.external.pypftp.Pftp method)

 	mlsd() (esm_archiving.external.pypftp.Pftp method)

 	
 module

 	esm_archiving

 	esm_archiving.cli

 	esm_archiving.config

 	esm_archiving.database

 	esm_archiving.database.model

 	esm_archiving.esm_archiving

 	esm_archiving.external

 	esm_archiving.external.pypftp

 	esm_calendar

 	esm_calendar.esm_calendar

 	esm_database

 	esm_database.cli

 	esm_database.esm_database

 	esm_database.getch

 	esm_database.location_database

 	esm_master

 	esm_master.database

 	esm_master.database_actions

 	esm_master.software_package

 	esm_parser.shell_to_dict

 	esm_parser.yaml_to_dict

 	esm_profile

 	esm_profile.esm_profile

 	esm_rcfile

 	esm_rcfile.esm_rcfile

 	esm_version_checker

 	esm_version_checker.cli

 	
 	month (esm_calendar.esm_calendar.Date attribute)

 	monthnames (esm_calendar.esm_calendar.Calendar attribute), [1]

N

 	
 	nicer_output() (esm_master.database.installation static method)

O

 	
 	on_disk (esm_archiving.database.model.ArchivedFile attribute)

 	on_tape (esm_archiving.database.model.ArchivedFile attribute)

 	
 	output() (esm_calendar.esm_calendar.Date method)

 	(esm_master.software_package.software_package method)

 	output_writer() (esm_database.esm_database.DisplayDatabase method)

P

 	
 	pack_tarfile() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	parse_shargs() (in module esm_database.cli)

 	Pftp (class in esm_archiving.external.pypftp)

 	pip_install() (in module esm_version_checker.cli)

 	pip_or_pull() (in module esm_version_checker.cli)

 	
 	pip_uninstall() (in module esm_version_checker.cli)

 	pip_upgrade() (in module esm_version_checker.cli)

 	PORT (esm_archiving.external.pypftp.Pftp attribute)

 	purify_cases() (in module esm_parser.shell_to_dict)

 	purify_expid_in() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	pwd() (esm_archiving.external.pypftp.Pftp method)

Q

 	
 	query_yes_no() (in module esm_archiving.esm_archiving)

 	
 	quit() (esm_archiving.external.pypftp.Pftp method)

R

 	
 	reconnect() (esm_archiving.external.pypftp.Pftp method)

 	register() (in module esm_database.location_database)

 	remap_old_new_keys() (in module esm_parser.shell_to_dict)

 	remove() (esm_archiving.external.pypftp.Pftp method)

 	remove_datasets() (esm_database.esm_database.DisplayDatabase method)

 	
 	removedirs() (esm_archiving.external.pypftp.Pftp method)

 	rename() (esm_archiving.external.pypftp.Pftp method)

 	replace_var() (in module esm_master.software_package)

 	report_single_package() (in module esm_version_checker.cli)

 	rmdir() (esm_archiving.external.pypftp.Pftp method)

 	run_command() (in module esm_archiving.esm_archiving)

S

 	
 	sday (esm_calendar.esm_calendar.Date property)

 	sdoy (esm_calendar.esm_calendar.Date property)

 	second (esm_calendar.esm_calendar.Date attribute)

 	select_stuff() (esm_database.esm_database.DisplayDatabase method)

 	set_rc_entry() (in module esm_rcfile.esm_rcfile)

 	setup_name (esm_master.database.installation attribute)

 	ShellscriptToUserConfig() (in module esm_parser.shell_to_dict)

 	shour (esm_calendar.esm_calendar.Date property)

 	size() (esm_archiving.external.pypftp.Pftp method)

 	sminute (esm_calendar.esm_calendar.Date property)

 	smonth (esm_calendar.esm_calendar.Date property)

 	software_package (class in esm_master.software_package)

 	sort_files_to_tarlists() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	
 	split_list_due_to_size_limit() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	ssecond (esm_calendar.esm_calendar.Date property)

 	stamp_filepattern() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	stamp_files() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	stat() (esm_archiving.external.pypftp.Pftp method)

 	sub_date() (esm_calendar.esm_calendar.Date method)

 	sub_tuple() (esm_calendar.esm_calendar.Date method)

 	sum_tar_lists() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	sum_tar_lists_human_readable() (in module esm_archiving)

 	(in module esm_archiving.esm_archiving)

 	syear (esm_calendar.esm_calendar.Date property)

T

 	
 	table_name (esm_database.location_database.database_location attribute)

 	Tarball (class in esm_archiving.database.model)

 	tarball (esm_archiving.database.model.ArchivedFile attribute)

 	tarball_id (esm_archiving.database.model.ArchivedFile attribute)

 	tarballs (esm_archiving.database.model.Archive attribute)

 	time_between() (esm_calendar.esm_calendar.Date method)

 	
 	timesep (esm_calendar.esm_calendar.Dateformat attribute)

 	timestamp (esm_master.database.installation attribute)

 	timeunits (esm_calendar.esm_calendar.Calendar attribute), [1]

 	timing() (in module esm_profile.esm_profile)

 	topline() (esm_database.location_database.database_location static method)

 	(esm_master.database.installation static method)

U

 	
 	upload() (esm_archiving.external.pypftp.Pftp static method)

 	(in module esm_archiving.external.pypftp)

 	
 	user_owns() (in module esm_version_checker.cli)

W

 	
 	walk() (esm_archiving.external.pypftp.Pftp method)

 	walk_for_directories() (esm_archiving.external.pypftp.Pftp method)

 	
 	walk_for_files() (esm_archiving.external.pypftp.Pftp method)

 	write_config_yaml() (in module esm_archiving.config)

Y

 	
 	yaml_file_to_dict() (in module esm_parser.yaml_to_dict)

 	
 	year (esm_calendar.esm_calendar.Date attribute)

Include a New Forcing/Input File

Feature available since version: 4.2

There are several ways of including a new forcing or input file into your experiment
depending on the degree of control you’d like to achieve. An important clarification is
that <forcing/input>_sources file dictionary specifies the sources (paths to
the files in the pools or personal folders, that need to be copied or linked into the
experiment folder). On the other hand <forcing/input>_files specifies which of these
sources are to be included in the experiment. This allows us to have many sources
already available to the user, and then the user can simply choose which of them to use
by chosing from <forcing/input>_files. <forcing/input>_in_work is used to copy
the files into the work folder (<base_dir>/<exp_id>/run_<DATE>/work) if necessary
and change their name. For more technical details see File Dictionaries.

The next sections illustrate some of the many options to handle forcing and input
files.

Source Path Already Defined in a Config File

	Make sure the source of the file is already specified inside the forcing_sources
or input_sources file dictionaries in the configuration file of the setup or
model you are running, or on the further_reading files.

	In your runscript, include the key of the source file you want to include inside
the forcing_files or input_files section.

Note

Note that the key containing the source in the forcing_sources or
input_sources can be different than the key specified in forcing_files or
input_files.

Example

ECHAM
In ECHAM, the source and input file paths are specified in a separate file
(<PATH>/esm_tools/configs/components/echam/echam.datasets.yaml) that
is reached through the further_reading section of the echam.yaml. This
file includes a large number of different sources for input and forcing contained
in the pool directories of the HPC systems Ollie and Mistral. Let’s have a look
at the sst forcing file options available in this file:

forcing_sources:
 # sst
 "amipsst":
 "${forcing_dir}/amip/${resolution}_amipsst_@YEAR@.nc":
 from: 1870
 to: 2016
 "pisst": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.ncy"

This means that from our runscript we will be able to select either amipsst
or pisst as sst forcing files. If you define scenario in ECHAM be
PI-CTRL the correct file source (pisst) is already selected for you.
However, if you would like to select this file manually you can just simply add
the following to your runscript:

forcing_files:
 sst: pisst

Modify the Source of a File

To change the path of the source for a given forcing or input file from your runscript:

	Include the source path under a key inside forcing_sources or
input_sources in your runscript:

<forcing/input>_sources:
 <key_for_your_file>: <path_to_your_file>

If the source is not a single file, but there is a file per year use the @YEAR@
and from: to: functionality in the path to copy only the files corresponding
to that run’s year:

<forcing/input>_sources:
 <key_for_your_source>: <firt_part_of_the_path>@YEAR@<second_part_of_the_path>
 from: <first_year>
 to: <last_year>

	Make sure the key for your path is defined in one of the config files that you are
using, inside of either forcing_files or input_files. If it is not defined
anywhere you will have to include it in your runscript:

<forcing/input>_files:
 <key_for_your_file>: <key_for_your_source>

Copy the file in the work folder and/or rename it

To copy the files from the forcing/input folders into the work folder
(<base_dir>/<exp_id>/run_<DATE>/work) or rename them:

	Make sure your file and its source is defined somewhere (either in the config files
or in your runscript) in <forcing/input>_sources and <forcing/input>_files
(see subsections Source Path Already Defined in a Config File
and Modify the Source of a File).

	In your runscript, add the key to the file you want to copy with value the
same as the key, inside <forcing/input>_in_work:

<forcing/input>_in_work:
 <key_for_your_file>: <key_for_your_file>

	If you want to rename the file set the value to the desired name:

<forcing/input>_in_work:
 <key_for_your_file>: <key_for_your_file>

Example

ECHAM
In ECHAM the sst forcing file depends in the scenario defined by the user:

esm_tools/config/component/echam/echam.datasets.yaml

forcing_sources:
 # sst
 "amipsst":
 "${forcing_dir}/amip/${resolution}_amipsst_@YEAR@.nc":
 from: 1870
 to: 2016
 "pisst": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.nc"

esm_tools/config/component/echam/echam.yaml

choose_scenario:
 "PI-CTRL":
 forcing_files:
 sst: pisst
 [...]

If scenario: "PI-CTRL" then the source selected will be
${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.nc
and the name of the file copied to the experiment forcing folder will be
${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.nc. However,
ECHAM needs this file in the same folder as the binary (the work folder)
under the name unit.20. To copy and rename this file into the work folder
the following lines are used in the echam.yaml configuration file:

forcing_in_work:
 sst: "unit.20"

You can use the same syntax inside your runscript to copy into the work
folder any forcing or input file, and rename it.

See also

	What Is YAML?

	File Dictionaries

Implement a New Model

Feature available since version: 4.2

	Upload your model into a repository such us gitlab.awi.de, gitlab.dkrz.de or GitHub.
Make sure to set up the right access permissions, so that you comply with the licensing of
the software you are uploading.

	If you are interested in implementing more than one version of the model, we recommend you
to commit them to the master branch in the order they were developed, and that you create
a tag per version. For example:

	Clone the empty master branch you just created and add your model files to it:

$ git clone https://<your_repository>
$ cp -rf <your_model_files_for_given_version> <your_repository_folder>
$ git add .

	Commit, tag the version and push the changes to your repository:

$ git commit -m "your comment here"
$ git tag -a <version_id> -m "your comment about the version"
$ git push -u origin <your_master_branch>
$ git push origin <version_id>

	Repeat steps a and b for all the versions that you would like to be present in
ESM-Tools.

	Now that you have your model in a repository you are ready to implement it into esm_tools.
First, you will need to create your own branch of esm_tools, following the steps 1-4 in
Contribution to esm_tools Package. The recommended name for the branch
would be feature/<name_of_your_model>.

	Then you will need to create a folder for your model inside esm_tools/configs/components
and create the model’s yaml file:

$ mkdir <PATH>/esm_tools/configs/components/<model>
$ touch <PATH>/esm_tools/configs/components/<model>/<model>.yaml

	Use your favourite text editor to open and edit your <model>.yaml in the
esm_tools/configs/components/<model> folder:

$ <your_text_editor> <PATH>/esm_tools/configs/components/<model>/<model>.yaml

	Complete the following information about your model:

YOUR_MODEL YAML CONFIGURATION FILE
#

model: your_model_name
type: type_of_your_model # atmosphere, ocean, etc.
version: "the_default_version_of_your_model"

	Include the names of the different versions in the available_versions section and the compiling
information for the default version:

[...]

available_versions:
- "1.0.0"
- "1.0.1"
- "1.0.2"
git-repository: "https://your_repository.git"
branch: your_model_branch_in_your_repo
install_bins: "path_to_the_binaries_after_comp"
comp_command: "your_shell_commands_for_compiling" # You can use the defaults "${defaults.comp_command}"
clean_command: "your_shell_commands_for_cleaning" # You can use the defaults "${defaults.clean_command}"

executable: your_model_command

setup_dir: "${model_dir}"
bin_dir: "${setup_dir}/name_of_the_binary"

In the install_bins key you need to indicate the path inside your model folder where the
binaries are compiled to, so that esm_master can find them once compiled. The
available_versions key is needed for esm_master to list the versions of your model.
The comp_command key indicates the command needed to compile your model, and can be set as
${defaults.comp_command} for a default command
(mkdir -p build; cd build; cmake ..; make install -j `nproc --all`), or you can define your
own list of compiling commands separated with ; ("command1; command2").

	At this point you can choose between including all the version information inside the same
<model>.yaml file, or to distribute this information among different version files:

Single fileMultiple version files
In the <model>.yaml, use a choose_ switch (see Switches (choose_))
to modify the default information that you added in step 7 to meet the requirements for each
specific version. For example, each different version has its own git branch:

choose_version:
 "1.0.0":
 branch: "1.0.0"
 "1.0.1":
 branch: "1.0.1"
 "1.0.2":
 branch: "develop"

	Create a yaml file per version or group of versions. The name of these files should
be the same as the ones in the available_versions section, in the main
<model>.yaml file or, in the case of a file containing a group of versions, the
shared name among the versions (i.e. fesom-2.0.yaml):

$ touch <PATH>/esm_tools/configs/<model>/<model-version>.yaml

	Open the version file with your favourite editor and include the version specific
changes. For example, you want that the version 1.0.2 from your model pulls from
the develop git branch, instead of from the default branch. Then you add to the
<model>-1.0.2.yaml version file:

branch: "develop"

Another example is the fesom-2.0.yaml. While fesom.yaml needs to contain all
available_versions, the version specific changes are split among fesom.yaml
(including information about versions 1) and fesom-2.0.yaml (including
information about versions 2):

fesom.yamlfesom-2.0.yaml
[...]

available_versions:
- 2.0-o
- 2.0-esm-interface
- '1.4'
- '1.4-recom-mocsy-slp'
- 2.0-esm-interface-yac
- 2.0-paleodyn
- 1.4-recom-awicm
- '2.0'
- '2.0-r' # OG: temporarily here
choose_version:
 '1.4-recom-awicm':
 destination: fesom-1.4
 branch: co2_coupling
 '1.4-recom-mocsy-slp':
 branch: fesom-recom-mocsy-slp
 destination: fesom-1.4

[...]

[...]

choose_version:
 '2.0':
 branch: 2.0.2
 git-repository:
 - https://gitlab.dkrz.de/FESOM/fesom2.git
 - github.com/FESOM/fesom2.git
 install_bins: bin/fesom.x
 2.0-esm-interface:
 branch: fesom2_using_esm-interface
 destination: fesom-2.0
 git-repository:
 - https://gitlab.dkrz.de/a270089/fesom-2.0_yac.git
 install_bins: bin/fesom.x

[...]

Note

These are just examples of model configurations, but the parser used by ESM-Tools
to read yaml files (esm_parser) allows for a lot of flexibility in their configuration;
i.e., imagine that the different versions of your model are in different repositories,
instead of in different branches, and their paths to the binaries are also different. Then
you can include the git-repository and install_bins variables inside the corresponding
version case for the choose_version.

	You can now check if esm_master can list and install your model correctly:

$ esm_master

This command should return, without errors, a list of available models and versions including yours.
Then you can actually try installing your model in the desired folder:

$ mkdir ~/model_codes
$ cd ~/model_codes
$ esm_master install-your_model-version

	If everything works correctly you can check that your changes pass flake8:

$ flake8 <PATH>/esm_tools/configs/components/<model>/<model>.yaml

Use this link [https://flake8.pycqa.org/en/latest/index.html] to learn more about flake8
and how to install it.

	Commit your changes, push them to the origin remote repository and submit a pull request
through GitHub (see steps 5-7 in Contribution to esm_tools Package).

Note

You can include all the compiling information inside a compile_infos section to avoid
conflicts with other choose_version switches present in your configuration file.

See also

	ESM-Tools Variables

	Switches (choose_)

	What Is YAML?

Implement a New Coupled Setup

Feature available since version: 4.2

An example of the different files needed for AWICM setup is included at the end of this section
(see Example).

	Make sure the models, couplers and versions you want to use, are already available for esm_master
to install them ($ esm_master and check the list). If something is missing you will need to
add it following the instructions in Implement a New Model.

	Once everything you need is available to esm_master, you will need to create your own branch of
esm_tools, following the steps 1-4 in Contribution to esm_tools Package.

	Setups need two types of files: 1) coupling files containing information about model versions and
coupling changes, and 2) setup files containing the general information about the setup and the
model changes. In this step we focus on the creation of the coupling files.

	Create a folder for your couplings in esm_tools/configs/couplings:

$ cd esm_tools/configs/couplings/
$ mkdir <coupling_name1>
$ mkdir <coupling_name2>
...

The naming convention we follow for the coupling files is
component1-version+component2-version+....

	Create a yaml file inside the coupling folder with the same name:

$ touch <coupling_name1>/<coupling_name1>.yaml

	Include the following information in each coupling file:

components:
- "model1-version"
- "model2-version"
- [...]
- "coupler-version"
coupling_changes:
- sed -i '/MODEL1_PARAMETER/s/OFF/ON/g' model1-1.0/file_to_change
- sed -i '/MODEL2_PARAMETER/s/OFF/ON/g' model2-1.0/file_to_change
- [...]

The components section should list the models and couplers used for the given coupling
including, their required version. The coupling_changes subsection should include a list of
commands to make the necessary changes in the component’s compilation configuration files
(CMakeLists.txt, configure, etc.), for a correct compilation of the coupled setup.

	Now, it is the turn for the creation of the setup file. Create a folder for your coupled setup
inside esm_tools/configs/setups folder, and create a yaml file for your setup:

$ mkdir <PATH>/esm_tools/configs/setups/<your_setup>
$ touch <PATH>/esm_tools/configs/setups/<your_setup>/<setup>.yaml

	Use your favourite text editor to open and edit your <setup>.yaml in the
esm_tools/configs/setups/<your_setup> folder:

$ <your_text_editor> <PATH>/esm_tools/configs/setups/<your_setup>/<setup>.yaml

	Complete the following information about your setup:

###
######################### NAME_VERSION YAML CONFIGURATION FILE ##########################
###

general:
 model: your_setup
 version: "your_setup_version"

 coupled_setup: True

 include_models: # List of models, couplers and componentes of the setup.
 - component_1 # Do not include the version number
 - component_2
 - [...]

Note

Models do not have a general section but in the setups the general
section is mandatory.

	Include the names of the different versions in the available_versions section:

general:

 [...]

 available_versions:
 - "1.0.0"
 - "1.0.1"

The available_versions key is needed for esm_master to list the versions of your setup.

	In the <setup>.yaml, use a choose_ switch (see Switches (choose_))
to assign the coupling files (created in step 3) to their corresponding setup versions:

general:

 [...]

 choose_version:
 "1.0.0":
 couplings:
 - "model1-1.0+model2-1.0"
 "1.0.1":
 couplings:
 - "model1-1.1+model2-1.1"

 [...]

	You can now check if esm_master can list and install your coupled setup correctly:

$ esm_master

This command should return, without errors, a list of available setups and versions including yours.
Then you can actually try installing your setup in the desire folder:

$ mkdir ~/model_codes
$ cd ~/model_codes
$ esm_master install-your_setup-version

	If everything works correctly you can check that your changes pass flake8:

$ flake8 <PATH>/esm_tools/configs/setups/<your_setup>/<setup>.yaml
$ flake8 <PATH>/esm_tools/configs/couplings/<coupling_name>/<coupling_name>.yaml

Use this link [https://flake8.pycqa.org/en/latest/index.html] to learn more about flake8
and how to install it.

	Commit your changes, push them to the origin remote repository and submit a pull request
through GitHub (see steps 5-7 in Contribution to esm_tools Package).

Example

Here you can have a look at relevant snippets of some of the AWICM-1.0 files.

fesom-1.4+echam-6.3.04p1.yamlawicm.yaml
One of the coupling files for AWICM-1.0 (
esm_tools/configs/couplings/fesom-1.4+echam-6.3.04p1/fesom-1.4+echam-6.3.04p1.yaml):

components:
- echam-6.3.04p1
- fesom-1.4
- oasis3mct-2.8
coupling_changes:
- sed -i '/FESOM_COUPLED/s/OFF/ON/g' fesom-1.4/CMakeLists.txt
- sed -i '/ECHAM6_COUPLED/s/OFF/ON/g' echam-6.3.04p1/CMakeLists.txt

Setup file for AWICM (esm_tools/configs/setups/awicm/awicm.yaml):

###
######################### AWICM 1 YAML CONFIGURATION FILE ###############################
###

general:
 model: awicm
 #model_dir: ${esm_master_dir}/awicm-${version}

 coupled_setup: True

 include_models:
 - echam
 - fesom
 - oasis3mct

 version: "1.1"
 scenario: "PI-CTRL"
 resolution: ${echam.resolution}_${fesom.resolution}
 postprocessing: false
 post_time: "00:05:00"
 choose_general.resolution:
 T63_CORE2:
 compute_time: "02:00:00"
 T63_REF87K:
 compute_time: "02:00:00"
 T63_REF:
 compute_time: "02:00:00"
 available_versions:
 - '1.0'
 - '1.0-recom'
 - CMIP6
 choose_version:
 '1.0':
 couplings:
 - fesom-1.4+echam-6.3.04p1
 '1.0-recom':
 couplings:
 - fesom-1.4+recom-2.0+echam-6.3.04p1
 CMIP6:
 couplings:
 - fesom-1.4+echam-6.3.04p1

See also

	ESM-Tools Variables

	Switches (choose_)

	What Is YAML?

How to branch-off FESOM from old spinup restart files

When you branch-off from very old FESOM ocean restart files, you may encounter the following runtime error:

read ocean restart file
Error:
NetCDF: Invalid dimension ID or name

This is because the naming of the NetCDF time dimension variable in the restart file has changed from T to time during the development of FESOM and the different FESOM versions.
Therefore, recent versions of FESOM expect the name of the time dimension to be time.

In order to branch-off experiments from spinup restart files that use the old name for the time dimension, you need to rename this dimension before starting the branch-off experiment.

Warning

The following work around will change the restart file permanently. Make sure you do not apply this to the original file.

To rename a dimension variable of a NetCDF file, you can use ncrename:

ncrename -d T,time <copy_of_restart_spinup_file>.nc

where T is the old dimension and time is the new dimension.

See also

	cookbook:How to run a branch-off experiment

Applying a temporary disturbance to ECHAM to overcome numeric instability (lookup table overflows of various kinds)

Feature available since version: esm_runscripts v4.2.1

From time to time, the ECHAM family of models runs into an error resulting
from too high wind speeds. This may look like this in your log files:

30: ==
30:
30: FATAL ERROR in cuadjtq (1): lookup table overflow
30: FINISH called from PE: 30

To overcome this problem, you can apply a small change to the factor “by which
stratospheric horizontal diffussion is increased from one level to the next
level above.” (mo_hdiff.f90), that is the namelist parameter enstdif,
in the dynctl section of the ECHAM namelist. As this is a common problem,
there is a way to have the run do this for specific years of your simulation. Whenever
a model year crashes due to numeric instability, you have to apply the method outlined
below.

	Generate a file to list years you want disturbed.

In your experiment script folder (not the one specific for each run),
you can create a file called disturb_years.dat. An abbreviated file tree
would look like:

	Add years you want disturbed.

The file should contain a list of years the disturbance should be applied
to, seperated by new lines. In practice, you will add a new line with the
value of the model year during which the model crashes whenever such a crash
occurs.

Example

In this example, we disturb the years 2005, 2007, and 2008 of an experiment
called EXAMPLE running on ollie:

$ cat /work/ollie/pgierz/test_esmtools/EXAMPLE/scripts/disturb_years.dat
2005
2007
2008

You can also set the disturbance strength in your configuration under
echam.disturbance. The default is 1.000001. Here, we apply a 200%
disturbance whenever a “disturb_year” is encountered.

echam:
 disturbance: 2.0

See also

	ECHAM6 User Handbook [https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/ECHAM/echam6_userguide.pdf], Table 2.4, dynctl

	Relevant source code [https://github.com/esm-tools/esm_runscripts/blob/103d0f3d614688efb839aa9292d843da49bd3788/esm_runscripts/namelists.py#L182-L217]

Exclude a Forcing/Input File

Feature available since version: 4.2

To exclude one of the predefined forcing or input files from being copied to your
experiment folder:

	Find the key of the file to be excluded inside the config file,
<forcing/input>_files file dictionary.

	In your runscript, use the remove_ functionality to exclude this key from the
<forcing/input>_files file dictionary:

remove_<input/forcing>_files:
 - <key_of_the_file1>
 - <key_of_the_file2>
 - ...

Example

ECHAM
To exclude the sst forcing file from been copied to the experiment folder
include the following lines in your runscript:

remove_forcing_files:
 - sst

See also

	What Is YAML?

	Remove Elements from a List/Dictionary (remove_)

	File Dictionaries

How to setup runscripts for different kind of experiments

This recipe describes how to setup a runscript for the following different kinds of experiments. Besides the variables described in ESM-Tools Variables, add the following variables to your runscript, as described below.

	Initial run: An experiment from initial model conditions.

general:
 lresume: 0

	Restart: An experiment that restarts from a previous experiment with the same experiment id.

general:
 lresume: 1

	Branching off: An experiment that restarts from a previous experiment but with a different experiment id.

general:
 lresume: 1
 ini_parent_exp_id: <old-experiment-id>
 ini_restart_dir: <path-to-restart-dir-of-old-experiment>/restart/

	Branching off and redate: An experiment that restarts from a previous experiment with a different experiment id and if this experiment should be continued with a diiferent start date.

general:
 lresume: 1
 ini_parent_exp_id: <old-experiment-id>
 ini_restart_dir: <path-to-restart-dir-of-old-experiment>/restart/
 first_initial_year: <year>

See also

	ESM-Tools Variables

	What Is YAML?

Changing Namelist Entries from the Runscript

Feature available since version: 4.2

You can modify namelists directly from your user yaml runscript configuration.

	Identify which namelist you want to modify and ensure that it is in the correct section.
For example, you can only modify ECHAM specific namelists from an ECHAM block.

	Find the subsection (“chapter”) of the namelist you want to edit.

	Find the setting (“key”) you want to edit

	Add a namelist_changes block to your configuration, specify next the
namelist filename you want to modify, then the chapter, then the key, and
finally the desired value.

In dot notation, this will look like:
<model_name>.namelist_changes.<namelist_name>.<chapter_name>.<key_name> = <value>

Example

Here are examples for just the relevant YAML change, and for a full runscript using this feature.

SnippetFull Runscript
In this example, we modify the co2vmr of the radctl section of
namelist.echam.

echam:
 namelist_changes:
 namelist.echam:
 radctl:
 co2vmr: 1200e-6

In this example, we set up AWI-ESM 2.1 for a 4xCO2 simulation. You can
see how multiple namelist changes are applied in one block.

general:
 setup_name: "awiesm"
 compute_time: "02:30:00"
 initial_date: "2000-01-01"
 final_date: "2002-12-31"
 base_dir: "/work/ab0246/a270077/For_Christian/experiments/"
 nmonth: 0
 nyear: 1
 account: "ab0246"

echam:
 restart_unit: "years"
 nprocar: 0
 nprocbr: 0
 namelist_changes:
 namelist.echam:
 radctl:
 co2vmr: 1137.e-6
 parctl:
 nprocar: 0
 nprocbr: 0
 runctl:
 default_output: True

awiesm:
 version: "2.1"
 postprocessing: true
 scenario: "PALEO"
 model_dir: "/work/ab0246/a270077/For_Christian/model_codes/awiesm-2.1/"

fesom:
 version: "2.0"
 res: "CORE2"
 pool_dir: "/pool/data/AWICM/FESOM2"
 mesh_dir: "/work/ba1066/a270061/mesh_CORE2_finaltopo_mean/"
 restart_rate: 1
 restart_unit: "y"
 restart_first: 1
 lresume: 0
 namelist_changes:
 namelist.config:
 paths:
 ClimateDataPath: "/work/ba0989/a270077/AWIESM_2_1_LR_concurrent_rad/nonstandard_input_files/fesom/hydrography/"

jsbach:
 input_sources:
 jsbach_1850: "/work/ba1066/a270061/mesh_CORE2_finaltopo_mean/tarfilesT63/input/jsbach/jsbach_T63CORE2_11tiles_5layers_1850.nc"

Practical Usage

It is generally a good idea to run your simulation once in check mode
before actually submitting and examining the resulting namelists:

$ esm_runscripts <your_config.yaml> -e <expid> -c

The namelists are printed in their final form as part of the log during the job
submission and can be seen on disk in the work folder of your first
run_XZY folder.

Note that you can have several chapters for one namelist or several namelists
included in one namelist_changes block, but you can only have one
namelist_changes block per model or component (see
Changing Namelists).

See also

	Default namelists on GitHub [https://github.com/esm-tools/esm_tools/tree/release/namelists]

	Changing Namelists

	What Is YAML?

Change/Add Flags to the sbatch Call

Feature available since version: 4.2

If you are using SLURM batch system together with ESM-Tools (so far the default
system), you can modify the sbatch call flags by modifying the following variables
from your runscript, inside the computer section:

	Key

	Description

	mail_type, mail_user

	Define these two variables to get updates about your slurm-job through email.

	single_proc_submit_flag

	By default defined as --ntasks-per-node=1

	additional_flags

	To add any additional flag that is not predefined in ESM-Tools

Example

Assume you want to run a simulation using the Quality of Service flag (--qos) of
SLURM with value 24h. Then, you’ll need to define the additional_flags inside
the computer section of your runscript. This can be done by adding the following to
your runscript:

computer:
 additional_flags: "--qos=24h"

Recipe Title

Feature available since version: <version_num>

General description here.

	Step 1
make sure you indent correctly inside steps

	Step 2
make sure you indent correctly inside steps

dictionary:
 variable1: 1
 variable2: false

Example

MODEL 1MODEL 2
Your text here

Your yaml code here

Your text here

Your yaml code here

See also

	Text of your link

	What Is YAML?

Using your own namelist

Feature available since version: 4.2

Warning

This feature is only recommended if the number of changes that need to be applied to the default
namelist is very large, otherwise we recommend to use the feature namelist_changes (see
Changing Namelist Entries from the Runscript). You can check the default namelists here [https://github.com/esm-tools/esm_tools/tree/release/namelists].

In your runscript, you can instruct ESM-Tools to substitute a given default namelist by a
namelist of your choice.

	Search for the config_sources variable inside the configuration file of the model you are trying to run,
and then, identify the “key” containing the path to the default namelist.

	In your runscript, indented in the corresponding model section, add an add_config_sources section,
containing a variable whose “key” is the one of step 1, and the value is the path of the new namelist.

	Bare in mind, that namelists are first loaded by ESM-Tools, and then modified by the default
namelist_changes in the configuration files. If you want to ignore all those changes for the your new
namelist you’ll need to add remove_namelist_changes: [<name_of_your_namelist>].

In dot notation both steps will look like:
<model_name>.<add_config_sources>.<key_of_the_namelist>: <path_of_your_namelist>
<model_name>.<remove_namelis_changes>: [<name_of_your_namelist>]

Warning

Use step 3 at your own risk! Many of the model specific information and functionality is
transferred to the model through namelist_changes, and therefore, we discourage you from using
remove_namelist_changes unless you have a very deep understanding of the configuration file and the model.
Following Changing Namelist Entries from the Runscript would be a safest solution.

Example

In this example we show how to use an ECHAM namelist.echam and a FESOM namelist.ice that are not
the default ones and omit the namelist_changes present in echam.yaml and fesom.yaml configuration
files.

ECHAMFESOM
Following step 1, search for the config_sources dictionary inside the echam.yaml:

Configuration Files:
config_sources:
 "namelist.echam": "${namelist_dir}/namelist.echam"

In this case the “key” is "namelist.echam" and the “value” is "${namelist_dir}/namelist.echam".
Let’s assume your namelist is in the directory /home/ollie/<usr>/my_namelists. Following step 2,
you will need to include the following in your runscript:

echam:
 add_config_sources:
 "namelist.echam": /home/ollie/<usr>/my_namelists/namelist.echam

If you want to omit the namelist_changes in echam.yaml or any other configuration file
that your model/couple setup is using, you’ll need to add to your runscript
remove_namelist_changes: [namelist.echam] (step 3):

echam:
 add_config_sources:
 "namelist.echam": /home/ollie/<usr>/my_namelists/namelist.echam

 remove_namelist_changes: [namelist.echam]

Warning

Many of the model specific information and functionality is transferred to the model
through namelist_changes, and therefore, we discourage you from using this unless you
have a very deep understanding of the echam.yaml file and the ECHAM model. For example,
using remove_namelist_changes: [namelist.echam] will destroy the following lines in the
echam.yaml:

choose_lresume:
 False:
 restart_in_modifications:
 "[[streams-->STREAM]]":
 - "vdate <--set_global_attr-- ${start_date!syear!smonth!sday}"
 # - fdate "<--set_dim--" ${year_before_date}
 # - ndate "<--set_dim--" ${steps_in_year_before}
 True:
 # pseudo_start_date: $((${start_date} - ${time_step}))
 add_namelist_changes:
 namelist.echam:
 runctl:
 dt_start: "remove_from_namelist"

This lines are relevant for correctly performing restarts, so if
remove_namelist_changes is used, make sure to have the approrpiate commands on your
runscript to remove dt_start from your namelist in case of a restart.

Following step 1, search for the config_sources dictionary inside the fesom.yaml:

config_sources:
 config: "${namelist_dir}/namelist.config"
 forcing: "${namelist_dir}/namelist.forcing"
 ice: "${namelist_dir}/namelist.ice"
 oce: "${namelist_dir}/namelist.oce"
 diag: "${namelist_dir}/namelist.diag"

In this case the “key” is ice and the “value” is ${namelist_dir}/namelist.ice.
Let’s assume your namelist is in the directory /home/ollie/<usr>/my_namelists. Following step 2,
you will need to include the following in your runscript:

fesom:
 add_config_sources:
 ice: "/home/ollie/<usr>/my_namelists/namelist.ice"

If you want to omit the namelist_changes in fesom.yaml or any other configuration file
that your model/couple setup is using, you’ll need to add to your runscript
remove_namelist_changes: [namelist.ice] (step 3):

fesom:
 add_config_sources:
 ice: "/home/ollie/<usr>/my_namelists/namelist.ice"

 remove_namelist_changes: [namelist.ice]

Warning

Many of the model specific information and functionality is transferred to the model
through namelist_changes, and therefore, we discourage you from using this unless you
have a very deep understanding of the fesom.yaml file and the FESOM model.

See also

	Default namelists on GitHub [https://github.com/esm-tools/esm_tools/tree/release/namelists]

	Append to an Existing List (add_)

	Changing Namelists

	What Is YAML?

 nav.xhtml

 Table of Contents

 		
 Welcome to ESM Tools’s documentation!

 		
 Introduction

 		
 Ten Steps to a Running Model

 		
 Installation

 		
 Downloading

 		
 Accessing components in DKRZ server

 		
 ESM Tools

 		
 Before you continue

 		
 Installing

 		
 Configuration

 		
 Uninstall ESM-tools

 		
 Transitioning from the Shell Version

 		
 ESM-Master

 		
 ESM-Environment

 		
 ESM-Runscripts

 		
 Functions –> Configs + Python Packages

 		
 Namelists

 		
 YAML File Syntax

 		
 What Is YAML?

 		
 YAML-Specific Syntax

 		
 ESM-Tools Extended YAML Syntax

 		
 Variable Calls

 		
 Switches (choose_)

 		
 Append to an Existing List (add_)

 		
 Remove Elements from a List/Dictionary (remove_)

 		
 Math and Calendar Operations

 		
 Globbing

 		
 Environment and Namelist Changes (_changes)

 		
 List Loops

 		
 File Dictionaries

 		
 YAML File Hierarchy

 		
 Hierarchy of YAML configuration files

 		
 ESM-Tools Variables

 		
 Tool-Specific Elements/Variables

 		
 Installation variables

 		
 Runtime variables

 		
 Calendar variables

 		
 Coupling variables

 		
 Other variables

 		
 Supported Models

 		
 AMIP

 		
 DEBM

 		
 ECHAM

 		
 ESM_INTERFACE

 		
 FESOM

 		
 FESOM_MESH_PART

 		
 HDMODEL

 		
 ICON

 		
 JSBACH

 		
 MPIOM

 		
 NEMO

 		
 NEMOBASEMODEL

 		
 OASIS3MCT

 		
 OpenIFS

 		
 PISM

 		
 RECOM

 		
 RNFMAP

 		
 SAMPLE

 		
 SCOPE

 		
 TUX

 		
 VILMA

 		
 XIOS

 		
 YAC

 		
 YAXT

 		
 ESM Master

 		
 Usage: esm_master

 		
 Configuring esm-master for Compile-Time Overrides

 		
 ESM-Versions

 		
 Usage

 		
 Getting ESM-Versions

 		
 ESM Runscripts

 		
 Usage

 		
 Arguments

 		
 Running a Model/Setup

 		
 Job Phases

 		
 Running only part of a job

 		
 Experiment Directory Structure

 		
 Cleanup of run_ directories

 		
 Debugging an Experiment

 		
 Setting the file movement method for filetypes in the runscript

 		
 ESM MOTD

 		
 Cookbook

 		
 Change/Add Flags to the sbatch Call

 		
 Example

 		
 Applying a temporary disturbance to ECHAM to overcome numeric instability (lookup table overflows of various kinds)

 		
 Example

 		
 See also

 		
 Changing Namelist Entries from the Runscript

 		
 Example

 		
 Practical Usage

 		
 See also

 		
 How to setup runscripts for different kind of experiments

 		
 See also

 		
 Implement a New Model

 		
 See also

 		
 Implement a New Coupled Setup

 		
 Example

 		
 See also

 		
 Include a New Forcing/Input File

 		
 Source Path Already Defined in a Config File

 		
 Modify the Source of a File

 		
 Copy the file in the work folder and/or rename it

 		
 See also

 		
 Exclude a Forcing/Input File

 		
 Example

 		
 See also

 		
 Using your own namelist

 		
 Example

 		
 See also

 		
 How to branch-off FESOM from old spinup restart files

 		
 See also

 		
 Frequently Asked Questions

 		
 Installation

 		
 ESM Runscripts

 		
 ESM Master

 		
 Frequent Errors

 		
 Python Packages

 		
 esm_tools.git

 		
 esm_master.git

 		
 esm_runscripts.git

 		
 esm_parser.git

 		
 esm_calendar.git

 		
 ESM Tools Code Documentation

 		
 esm_archiving package

 		
 Subpackages

 		
 Submodules

 		
 esm_archiving.cli module

 		
 esm_archiving.config module

 		
 esm_archiving.esm_archiving module

 		
 esm_archiving.database package

 		
 Submodules

 		
 esm_archiving.database.model module

 		
 esm_archiving.database.utils module

 		
 esm_archiving.external package

 		
 Submodules

 		
 esm_archiving.external.pypftp module

 		
 esm_calendar package

 		
 Submodules

 		
 esm_calendar.esm_calendar module

 		
 esm_database package

 		
 Submodules

 		
 esm_database.cli module

 		
 esm_database.esm_database module

 		
 esm_database.getch module

 		
 esm_database.location_database module

 		
 esm_environment package

 		
 Submodules

 		
 esm_environment.esm_environment module

 		
 esm_master package

 		
 Submodules

 		
 esm_master.cli module

 		
 esm_master.compile_info module

 		
 esm_master.database module

 		
 esm_master.database_actions module

 		
 esm_master.esm_master module

 		
 esm_master.general_stuff module

 		
 esm_master.software_package module

 		
 esm_master.task module

 		
 esm_parser package

 		
 Submodules

 		
 esm_parser.esm_parser module

 		
 esm_parser.shell_to_dict module

 		
 esm_parser.yaml_to_dict module

 		
 esm_profile package

 		
 Submodules

 		
 esm_profile.esm_profile module

 		
 esm_rcfile package

 		
 Submodules

 		
 esm_rcfile.esm_rcfile module

 		
 esm_runscripts package

 		
 Submodules

 		
 esm_runscripts.batch_system module

 		
 esm_runscripts.cli module

 		
 esm_runscripts.compute module

 		
 esm_runscripts.coupler module

 		
 esm_runscripts.database module

 		
 esm_runscripts.database_actions module

 		
 esm_runscripts.event_handlers module

 		
 esm_runscripts.filelists module

 		
 esm_runscripts.helpers module

 		
 esm_runscripts.inspect module

 		
 esm_runscripts.last_minute module

 		
 esm_runscripts.methods module

 		
 esm_runscripts.namelists module

 		
 esm_runscripts.oasis module

 		
 esm_runscripts.pbs module

 		
 esm_runscripts.postprocess module

 		
 esm_runscripts.prepare module

 		
 esm_runscripts.prev_run module

 		
 esm_runscripts.sim_objects module

 		
 esm_runscripts.slurm module

 		
 esm_runscripts.tidy module

 		
 esm_runscripts.virtual_env_builder module

 		
 esm_runscripts.yac module

 		
 esm_version_checker package

 		
 Submodules

 		
 esm_version_checker.cli module

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Contribution to esm_tools Package

 		
 Contribution to Other Packages

 		
 Pull Request Guidelines

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Project Management

 		
 Contributors

 		
 Beta Testers

_images/graphviz-b2f6e15ca2fdb405e35469b16c2af24f752b0e84.png
<runscript>.yam|

overwrites

‘overwrites

<component>.yam!

‘overwrites

<machine>.yam|

_images/graphviz-db6686b8d379eeac5146a507d65f63620a47df8b.png
Cmedepdr| [AwicH e
[=] -
= e

[rrmomer] | e
3 -
[

_images/graphviz-6ee66332b66c33dd9aab4c0017ce78831269606e.png
Run
simulation

Post-
processing Gather
information

Resubmit
simulation

_images/graphviz-fb7288c7606feca4c1aaa3929b57eb103e922bfd.png
General exp dir

disturb _years.dat

_static/ESM-TOOLS_LOGO_RGB_72dpi.jpg
01000101
01010011 - OO S
01001101

_static/minus.png

_static/plus.png

_static/file.png

