
ESM Tools r6.13 UserManual

Dirk Barbi, Nadine Wieters, Paul Gierz,
Fatemeh Chegini, Miguel Andrés-Martínez,

Deniz Ural

Jul 26, 2022

CONTENTS:

1 Introduction 1

2 Ten Steps to a Running Model 3

3 Installation 5
3.1 Downloading . 5
3.2 Installing in an encapuslated environment . 5
3.3 Accessing components in DKRZ server . 6

4 ESM Tools 7
4.1 Before you continue . 7
4.2 Installing . 8
4.3 Upgrade ESM-Tools . 8
4.4 Uninstall ESM-Tools . 9

5 Transitioning from the Shell Version 11
5.1 ESM-Master . 11
5.2 ESM-Environment . 12
5.3 ESM-Runscripts . 12
5.4 Functions –> Configs + Python Packages . 12
5.5 Namelists . 13

6 YAML File Syntax 15
6.1 What Is YAML? . 15
6.2 ESM-Tools Extended YAML Syntax . 16

7 YAML File Hierarchy 31
7.1 Hierarchy of YAML configuration files . 31

8 ESM-Tools Variables 33
8.1 Tool-Specific Elements/Variables . 33

9 Supported Models 37
9.1 AMIP . 37
9.2 DEBM . 37
9.3 ECHAM . 37
9.4 ESM_INTERFACE . 37
9.5 FESOM . 38
9.6 FESOM_MESH_PART . 38
9.7 HDMODEL . 38
9.8 ICON . 38

i

9.9 JSBACH . 38
9.10 MPIOM . 38
9.11 NEMO . 39
9.12 NEMOBASEMODEL . 39
9.13 OASIS3MCT . 39
9.14 OpenIFS . 39
9.15 PISM . 39
9.16 RECOM . 40
9.17 RNFMAP . 40
9.18 SAMPLE . 40
9.19 SCOPE . 40
9.20 TUX . 40
9.21 VILMA . 40
9.22 XIOS . 40
9.23 YAC . 41
9.24 YAXT . 41

10 ESM Master 43
10.1 Usage: esm_master . 43
10.2 Configuring esm-master for Compile-Time Overrides . 44

11 ESM-Versions 45
11.1 Usage . 45
11.2 Getting ESM-Versions . 45

12 ESM Runscripts 47
12.1 Usage . 47
12.2 Arguments . 48
12.3 Running a Model/Setup . 49
12.4 Job Phases . 49
12.5 Running only part of a job . 49
12.6 Experiment Directory Structure . 49
12.7 Cleanup of run_ directories . 54
12.8 Debugging an Experiment . 54
12.9 Setting the file movement method for filetypes in the runscript . 54

13 ESM Runscripts - Using the Workflow Manager 57
13.1 Introduction . 57
13.2 Subjobs of a normal run . 57
13.3 Keywords available for defining additional data processing subjobs 58
13.4 Example 1: Adding an additional postprocessing subjob . 58
13.5 Example 2: Adding an additional preprocessing subjob . 59
13.6 Example 3: Adding a iterative coupling job . 59

14 ESM Environment 61
14.1 Environment variables . 61
14.2 Modification of the environment through the model/setup files . 62
14.3 Coupled setup environment control . 63

15 ESM MOTD 65

16 Cookbook 67
16.1 Change/Add Flags to the sbatch Call . 67
16.2 Applying a temporary disturbance to ECHAM to overcome numeric instability (lookup table overflows

of various kinds) . 68

ii

16.3 Changing Namelist Entries from the Runscript . 70
16.4 Heterogeneous Parallelization Run (MPI/OpenMP) . 72
16.5 How to setup runscripts for different kind of experiments . 73
16.6 Implement a New Model . 74
16.7 Implement a New Coupled Setup . 77
16.8 Include a New Forcing/Input File . 81
16.9 Exclude a Forcing/Input File . 84
16.10 Using your own namelist . 84
16.11 How to branch-off FESOM from old spinup restart files . 87

17 Frequently Asked Questions 89
17.1 Installation . 89
17.2 ESM Runscripts . 89
17.3 ESM Master . 90
17.4 Frequent Errors . 90

18 Python Packages 93
18.1 esm_tools.git . 93
18.2 esm_master.git . 93
18.3 esm_runscripts.git . 93
18.4 esm_parser.git . 93
18.5 esm_calendar.git . 94

19 ESM Tools Code Documentation 95
19.1 esm_archiving package . 95
19.2 esm_calendar package . 108
19.3 esm_cleanup package . 113
19.4 esm_database package . 114
19.5 esm_environment package . 115
19.6 esm_master package . 115
19.7 esm_motd package . 117
19.8 esm_parser package . 117
19.9 esm_plugin_manager package . 119
19.10 esm_profile package . 119
19.11 esm_runscripts package . 121
19.12 esm_tests package . 121
19.13 esm_tools package . 121
19.14 esm_utilities package . 123

20 Contributing 125
20.1 Types of Contributions . 125
20.2 Get Started! . 126
20.3 Pull Request Guidelines . 127
20.4 Deploying . 128

21 Credits 129
21.1 Development Lead . 129
21.2 Project Management . 129
21.3 Contributors . 129
21.4 Beta Testers . 129

22 Indices and tables 131

Python Module Index 133

iii

Index 135

iv

CHAPTER

ONE

INTRODUCTION

This is the user manual for the esm-tools. To contribute to this document, please contact the authors for feedback.

The esm-tools are a collection of scripts to download, compile, configure different simulation models for the Earth
system, such as atmosphere, ocean, geo-biochemistry, hydrology, sea-ice and ice-sheet models, as well as coupled
Earth System Models (ESMs). They include functionality to write unified runscripts to carry out model simulations
for different model setups (standalone and ESMs) on different HPC systems.

1

ESM Tools r6.13 UserManual

2 Chapter 1. Introduction

CHAPTER

TWO

TEN STEPS TO A RUNNING MODEL

1. Make sure you have git installed with version newer than 2.13, that the python version is 3.6 or later (see Before
you continue), and that pip is up-to-date (pip install -U pip). Also make sure that the location to which the
python binaries will be installed (which is ~/.local/bin by default) is in your PATH. For that purpose, add the
following lines to one of your login or profile files, i.e. ~/.bash_profile, ~/.bashrc, ~/.profile, etc.:

$ export PATH=$PATH:~/.local/bin
$ export LC_ALL=en_US.UTF-8
$ export LANG=en_US.UTF-8

2. Make sure you have a GitHub account and check our GitHub repository (https://github.com/esm-tools).

3. Download the git repository esm_tools.git from GitHub:

$ git clone https://github.com/esm-tools/esm_tools.git

4. In the new folder esm_tools, run the installer:

$ cd esm_tools
$./install.sh

This should install the python packages of ESM-Tools. If you wonder where they end up, take a look at ~/.
local/lib/python%versionnumber%/site-packages.

5. Run esm_master once. You should see a long list of available targets if everything works.

6. Go to the toplevel folder into which you want to install your model codes, and run esm_master install-,
followed by the name and the version of the model you want to install. As an example, if we want to install
FESOM2:

$ cd /some/folder/you/wish/to/work/in
$ mkdir model_codes
$ cd model_codes
$ esm_master install-fesom-2.0

You will be asked for your password to the repository of the model you are trying to install. If you don’t
have access to that repo yet, esm_master will not be able to install the model; you will have to contact the
model developers to be granted access (Supported Models). Feel free to contact us if you don’t know who
the model developers are.

7. Check if the installation process worked; if so, you should find the model executable in the subfolder bin of the
model folder. E.g.:

$ ls fesom-2.0/bin

3

ESM Tools r6.13 UserManual

8. Go back to the esm_tools folder, and pick a sample runscript from the runscripts subfolder. These examples
are very short and can be easily adapted. Pick one that is for the model you want to run, and maybe already
adapted to the HPC system you are working on. Make sure to adapt the paths to your personal settings, e.g.
model_dir, base_dir etc.:

$ cd <PATH TO ESM TOOLS>/esm_tools/runscripts/fesom2
$ (your_favourite_editor) fesom2-ollie-initial-monthly.yaml

Notice that the examples exist with the endings .yaml.

9. Run a check of the simulation to see if all needed files are found, and everything works as expected:

$ esm_runscripts fesom2-ollie-initial-monthly.yaml -e my_first_test -c

The command line option -c specifies that this is a check run, which means that all the preparations, file system
operations, . . . are performed as for a normal simulation, but then the simulation will stop before actually sub-
mitting itself to the compute nodes and executing the experiment. You will see a ton of output on the screen that
you should check for correctness before continuing, this includes:

• information about missing files that could not be copied to the experiment folder

• namelists that will be used during the run

• the miniature .run script that is submitted the compute nodes, which also shows the environment that will
be used

You can also check directly if the job folder looks like expected. You can find it at $BASE_DIR/$EXP_ID/
run_xxxxxxxxxxx, where BASE_DIR was set in your runscript, EXP_ID (probably) on the command line, and
run_xxxxxxxxxxxxx stands for the first chunk of your chain job. You can check the work folder, which is located
at $BASE_DIR/$EXP_ID/run_xxxxxxxxxxxx/work, as well as the complete configuration used to generate the
simulation, located at $BASE_DIR/$EXP_ID/run_xxxxxxxxxxxx/log.

10. Run the experiment:

$ esm_runscripts fesom2-ollie-initial-monthly.yaml -e my_first_test

That should really be it. Good luck!

4 Chapter 2. Ten Steps to a Running Model

CHAPTER

THREE

INSTALLATION

3.1 Downloading

esm_tools is hosted on https://github.com/esm-tools. To get access to the software you need to be able to log into
GitHub.

Then you can start by cloning the repository esm_tools.git:

$ git clone https://github.com/esm-tools/esm_tools.git

This gives you a collection of yaml configuration files containing all the information on models, coupled setups, ma-
chines, etc. in the subfolder config, default namelists in the folder namelists, example runscripts for a large number
of models on different HPC systems in subfolder runscripts, and this documention in docs. Also you will find the
installer install.sh used to install the python packages.

3.2 Installing in an encapuslated environment

Based on an alternative installation procedure, that provides an esm-tools installation employing direnv (https://direnv.
net/), you can now install various encapsulated versions of esm-tools alongside each other. These different installa-
tions do not impact each others’ configuration. Consequently, they can coexist in peaceful harmony. In the suggested
alternative installation method all configurations will reside within the base folder of a specific esm-tools version that
you install. There is no dependency on configurations outside the installation directory of a specific esm-tools version,
mitigating the potential for side effects if another version of esm tools is installed in parallel. To install esm-tools
as suggested here, just follow the procedure outlined below. The steps to create the installation involve preparation
of direnv, including setting up an environment that encapsulates potentially version-specific settings, creating a dedi-
cated directory to which a specific version of esm-tools will be installed, and installing the the esm-tools via pip. The
commands to be executed are (note comments for further explanation):

$ curl -sfL https://direnv.net/install.sh | bash # install direnv if not yet done - this␣
→˓enables encapsulation and parallel use of different esm-tools versions
$ mkdir esm_tools_v6.1.10 #adjust version number as appropriate
$ cd esm_tools_v6.1.10/
#create .envrc (e.g. via direnv edit .) and add information matching the result of the␣

→˓cat command below
$ cat .envrc
module load python3
layout python
module load gcc

$ pip install -U pip wheel
$ pip install esm-tools

5

https://github.com/esm-tools
https://direnv.net/
https://direnv.net/

ESM Tools r6.13 UserManual

3.3 Accessing components in DKRZ server

Some of the esm_tools components are hosted in the gitlab.dkrz.de servers. To be able to reach these components
you will need:

1. A DKRZ account (https://www.dkrz.de/up/my-dkrz/getting-started/account/DKRZ-user-account).

2. Become a member of the group esm_tools. Either look for the group and request membership, or directly
contact dirk.barbi@awi.de.

3. Request access from the corresponding author of the component. Feel free to contact us if you don’t know who
the model developers are or check the Supported Models section.

6 Chapter 3. Installation

https://www.dkrz.de/up/my-dkrz/getting-started/account/DKRZ-user-account
mailto:dirk.barbi@awi.de

CHAPTER

FOUR

ESM TOOLS

For our complete documentation, please check https://esm-tools.readthedocs.io/en/latest/index.html.

4.1 Before you continue

You will need python 3 (possibly version 3.6 or newer), a version of git that is not ancient (everything newer than
2.10 should be good), and up-to-date pip (pip install -U pip) to install the esm_tools. That means that on the
supported machines, you could for example use the following settings:

ollie.awi.de:

$ module load git
$ module load python3

levante.dkrz.de:

$ module load git
$ module load python3

glogin.hlrn.de / blogin.hlrn.de:

$ module load git
$ module load anaconda3

juwels.fz-juelich.de:

$ module load git
$ module load Python-3.6.8

aleph:

$ module load git
$ module load python

Note that some machines might raise an error conflict netcdf_c when loading anaconda3. In that case you will
need to swap netcdf_c with anaconda3:

$ module unload netcdf_c
$ module load anaconda3

7

https://esm-tools.readthedocs.io/en/latest/index.html

ESM Tools r6.13 UserManual

4.2 Installing

1. First, make sure you add the following lines to one of your login or profile files, i.e. ~/.bash_profile, ~/.
bashrc, ~/.profile, etc.:

$ export PATH=$PATH:~/.local/bin
$ export LC_ALL=en_US.UTF-8
$ export LANG=en_US.UTF-8

2. Inside the same login or profile file, add also the module commands necessary for the HPC system you are using
(find the lines in the section above).

3. You can choose to source now your login or profile file, so that the module and export commands are run (e.g.
$ source ~/.bash_profile).

4. To use the new version of the ESM-Tools, now rewritten in Python, clone this repository:

$ git clone https://github.com/esm-tools/esm_tools.git

5. Then, run the install.sh:

$./install.sh

You should now have the command line tools esm_master and esm_runscripts, which replace the old version.

4.3 Upgrade ESM-Tools

To upgrade all the ESM-Tools packages you can run:

$ esm_versions upgrade

This will only upgrade the packages that are not installed in editable mode. Those, installed in editable mode will need
to be upgraded using git.

You can also choose to upgrade specific packages by adding the package name to the previous command, i.e. to upgrade
esm_master:

$ esm_versions upgrade esm_parser

Note: If there are version conflicts reported back at this point with some of the Python modules (i.e. pkg_resources.
ContextualVersionConflict: (<package name>)), try reinstalling that package: pip install <package>
--upgrade --ignore-installed.

8 Chapter 4. ESM Tools

ESM Tools r6.13 UserManual

4.4 Uninstall ESM-Tools

To uninstall your current installation make sure you have the most recent version of pip available for your system:

$ python3 -m pip install -U pip

Then, you can use use the following command to uninstall all ESM-Tools packages:

$ esm_versions clean

You can also choose to manually uninstall. In order to do that, remove the installed Python packages and delete the
esm_* executables. The following commands will do the trick if you installed with the install.sh script or installed
using pip with user mode

$ rm -ri ~/.local/bin/esm*
$ rm -ri ~/.local/lib/python3.<version>/site-packages/esm*

Note that you may have a different Python version, so the second command might need to be adapted. You may also
use pip to uninstall any of the packages:

$ pip uninstall [--user] esm-tools

The --user flag may be required when using pip.

4.4. Uninstall ESM-Tools 9

ESM Tools r6.13 UserManual

10 Chapter 4. ESM Tools

CHAPTER

FIVE

TRANSITIONING FROM THE SHELL VERSION

5.1 ESM-Master

The Makefile based esm_master of the shell version has been replaced by a (python-based) executable called
esm_master that should be in your PATH after installing the new tools. The command can be called from any place
now, models will be installed in the current work folder. The old commands are replaced by new, but very similar calls:

OLD WAY: NEW WAY:
make --> esm_master (to get the list of␣
→˓available

targets)
make get-fesom-1.4 --> esm_master get-fesom-1.4 (download)
make conf-... --> esm_master conf-... (configure)
make comp-... --> esm_master comp-... (compile)
make clean-... --> esm_master clean-... (clean)

Apart from that, the new esm_master offers certain new functionality:

esm_master fesom (lists all available targets containing the string "fesom")
esm_master install-... (shortcut for: get- , then conf- , then comp-)
esm_master recomp-... (shortcut for: conf-, then clean-, then comp-)
esm_master log-... (overview over last commits of the model, e.g. git log)
esm_master status-... (changes in the model repository since last commit, e.g. git␣
→˓status)

If the user wants to define own shortcut commands, that can be done by editing esm_tools/configs/esm_master/
esm_master.yaml. New wrappers for the version control software can be e.g. added in esm_tools/configs/vcs/
git.yaml. Adding commands in these configuration files is sufficient that they show up in the list of targets.

The details about models, setups, etc. are now to be found in esm_tools/configs/esm_master/setups2models.
yaml. This file is a strucutred list instead of a barely readable, and rapidly growing, makefile. If you want to change
details of your model, or add new components, this is where it should be put. Please refer to the chapter ESM Master
for further details.

11

ESM Tools r6.13 UserManual

5.2 ESM-Environment

A visible tool, like esm-environment used to be, doesn’t exist anymore. The information about the environment needed
for compiling / running a model is contained:

• in the machine yaml file (e.g. esm_tools/configs/machines/ollie.yaml): This contains a default envi-
ronment that we know works for a number of models / setups, but maybe not in an optimal way,

• in the model yaml file (e.g. esm_tools/configs/fesom/fesom-2.0.yaml): The model files are allowed
to contain deviations from the default environment defined in the machine file, indicated by the keywords
environment_changes, compiletime_environment_changes or runtime_environment_changes.

Please note that even though there still is a python package called esm_environment, this is just the collection of
python routines used to assemble the environment. It does not contain anything to be configured by the user.

5.3 ESM-Runscripts

One main thing that has changed for the runtime tool is the way it is evoked:

OLD WAY: NEW WAY:
./runscriptname -e experiment_id esm_runscripts runscriptname -e experiment_id

Instead of calling your runscript directly, it is now interpreted and executed by the wrapper esm_runscripts, the
second executable to be added to your PATH when installing the Tools. Internally, esm_runscripts reads in the
script file line by line and converts it into a python dictionary. It is therefore also possible to write the “runscripts” in
the form of a yaml file itself, which can be imported by python much easier. The user is invited to try the yaml-style
runscripts, some example can be found in esm_tools/runscripts.

Some of the variables which had to be set in the script when using the shell version are now deprecated, these include:

• FUNCTION_PATH

• FPATH

• machine

Also the last two lines of the normel runscript for the shell version of the tools, load_all_functions and
general_do_it_all, don’t do anything anymore, and can be safely removed. They don’t hurt though.

(. . . to be continued. . .)

5.4 Functions –> Configs + Python Packages

The shell functions, which used to be in esm-runscripts/functions/all, are gone. That was basically the whole
point of re-coding the tools, to get rid of this mixture of model configuration, wild shell hacks, and in general lots of
annoying problems. What used to be in the functions is now seperated into python code (which is actually doing things,
but doesn’t have any model-, setup- or machine specific information), and yaml configurations (which are basically
structured lists of all the information we have, including mesh resolutions, scenario simulation forcings,. . .). Anything
really that you could possibly know about running a simulation belongs into the yaml configs that you can now find in
esm_runscripts/configs, while ESM-Tools functionality is coded in the python packages.

12 Chapter 5. Transitioning from the Shell Version

ESM Tools r6.13 UserManual

5.5 Namelists

No changes. Namelists can be found in esm_tools/namelists.

5.5. Namelists 13

ESM Tools r6.13 UserManual

14 Chapter 5. Transitioning from the Shell Version

CHAPTER

SIX

YAML FILE SYNTAX

6.1 What Is YAML?

YAML is a structured data format oriented to human-readability. Because of this property, it is the chosen format for
configuration and runscript files in ESM-Tools and the recommended format for runscripts (though bash runscripts
are still supported). These YAML files are read by the esm_parser and then converted into a Python dictionary. The
functionality of the YAML files is further expanded through the esm_parser and other ESM-Tools packages (i.e. calendar
math through the esm_calendar). The idea behind the implementation of the YAML format in ESM-Tools is that the user
only needs to create or edit easy-to-write YAML files to run a model or a coupled setup, speeding up the configuration
process, avoiding bugs and complex syntax. The same should apply to developers that would like to implement their
models in ESM-Tools: the implementation consists on the configuration of a few YAML files.

Warning: Tabs are not allowed as yaml indentation, and therefore, ESM-Tools will return an error every time a
yaml file with tabs is invoked (e.g. runscripts and config files need to be ‘tab-free’).

6.1.1 YAML-Specific Syntax

The main YAML elements relevant to ESM-Tools are:

• Scalars: numbers, strings and booleans, defined by a key followed by : and a value, i.e.:

model: fesom
version: "2.0"
time_step: 1800

• Lists: a collection of elements defined by a key followed by : and an indented list of elements (numbers, strings
or booleans) starting with -, i.e.:

namelists:
- namelist.config
- namelist.forcing
- namelist.oce

or a list of the same elements separated by , inside square brackets [elem1, elem2]:

namelists: [namelist.config, namelist.forcing, namelist.oce]

• Dictionaries: a collection of scalars, lists or dictionaries nested inside a general key, i.e.:

15

ESM Tools r6.13 UserManual

config_files:
config: config
forcing: forcing
ice: ice

Some relevant properties of the YAML format are:

• Only white spaces can be used for indentation. Tabs are not allowed.

• Indentation can be used to structure information in as many levels as required, i.e. a dictionary
choose_resolution that contains a list of dictionaries (T63, T31 and T127):

choose_resolution:
T63:

levels: "L47"
time_step: 450
[...]

T31:
levels: "L19"
time_step: 450
[...]

T127:
levels: "L47"
time_step: 200
[...]

• This data can be easily imported as Python dictionaries, which is part of what the esm_parser does.

• : should always be followed by a white space.

• Strings can be written both inside quotes (key: "string" or key: 'string') or unquoted (key:
string).

• YAML format is case sensitive.

• It is possible to add comments to YAML files using # before the comment (same as in Python).

6.2 ESM-Tools Extended YAML Syntax

Warning: Work in progress. This chapter might be incomplete. Red statements might be imprecise or not true.

ESM-Tools offers extended functionality of the YAML files through the esm_parser. The following subsections list the
extended ESM-Tools syntax for YAML files including calendar and math operations (see Math and Calendar Opera-
tions). The yaml:YAML Elements section lists the YAML elements needed for configuration files and runscripts.

16 Chapter 6. YAML File Syntax

ESM Tools r6.13 UserManual

6.2.1 Variable Calls

Variables defined in a YAML file can be invoked on the same file or in oder files provided that the file where it is defined
is read for the given operation. The syntax for calling an already defined variable is:

"${name_of_the_variable}"

Variables can be nested in sections. To define a variable using the value of another one that is nested on a section the
following syntax is needed:

"${<section>.<variable>}"

When using esm_parser, variables in components, setups, machine files, general information, etc., are grouped under
sections of respective names (i.e. general, ollie, fesom, awicm, . . .). To access a variable from a different file than
the one in which it is declared it is necessary to reference the file name or label as it follows:

"${<file_label>.<section>.<variable>}"

Example
Lets take as an example the variable ini_parent_exp_id inside the general section in the FESOM-REcoM runscript
runscripts/fesom-recom/fesom-recom-ollie-restart-daily.yaml:

general:
setup_name: fesom-recom
[...]
ini_parent_exp_id: restart_test
ini_restart_dir: /work/ollie/mandresm/esm_yaml_test/${ini_parent_exp_id}/restart/
[...]

Here we use ini_parent_exp_id to define part of the restart path ini_restart_dir. general.ini_restart_dir
is going to be called from the FESOM-REcoM configuration file configs/setups/fesom-recom/fesom-recom.
yaml to define the restart directory for FESOM fesom.ini_restart_dir:

[...]
ini_restart_dir: "${general.ini_restart_dir}/fesom/"
[...]

Note that this line adds the subfolder /fesom/ to the subdirectory.

If we would like to invoke from the same runscript some of the variables defined in another file, for example the useMPI
variable in configs/machines/ollie.yaml, then we would need to use:

a_new_variable: "${ollie.useMPI}"

Bare in mind that these examples will only work if both FESOM and REcoM are involved in the ESM-Tool task triggered
and if the task is run in Ollie (i.e. it will work for esm_runscripts fesom-recom-ollie-restart-daily.yaml
-e <experiment_id> ...).

6.2. ESM-Tools Extended YAML Syntax 17

ESM Tools r6.13 UserManual

6.2.2 Switches (choose_)

A YAML list named as choose_<variable> function as a switch that evaluates the given variable. The nested
element keys inside the choose_<variable> act as cases for the switch and the values of this elements are only
defined outside of the choose_<variable> if they belong to the selected case_key:

variable_1: case_key_2

choose_variable_1:
case_key_1:

configuration_1: value
configuration_2: value
[...]

case_key_2:
configuration_1: value
configuration_2: value
[...]

"*":
configuration_1: value
configuration_2: value
[...]

The key "*" or * works as an else.

Example
An example that can better illustrate this general description is the FESOM 2.0 resolution configuration in <PATH>/
esm_tools/configs/fesom/fesom-2.0.yaml:

resolution: CORE2

choose_resolution:
CORE2:

nx: 126858
mesh_dir: "${pool_dir}/meshes/mesh_CORE2_final/"
nproc: 288

GLOB:
nx: 830305

Here we are selecting the CORE2 as default configuration set for the resolution variable, but we could choose the
GLOB configuration in another YAML file (i.e. a runscript), to override this default choice.

In the case in which resolution: CORE2, then nx, mesh_dir and nproc will take the values defined inside the
choose_resolution for CORE2 (126858, runscripts/fesom-recom/fesom-recom-ollie-restart-daily.
yaml, and 288 respectively), once resolved by the esm_parser, at the same nesting level of the choose_resolution.

Note: choose_versions inside configuration files is treated in a special way by the esm_master. To avoid conflicts
in case an additional choose_versions is needed, include the compilation information inside a compile_infos
section (including the choose_versions switch containning compilation information). Outside of this exception, it
is possible to use as many choose_<variable> repetitions as needed.

18 Chapter 6. YAML File Syntax

ESM Tools r6.13 UserManual

6.2.3 Append to an Existing List (add_)

Given an existing list list1 or dictionary:

list1:
- element1
- element2

it is possible to add members to this list/dictionary by using the following syntax:

add_list1:
- element3
- element4

so that the variable list1 at the end of the parsing will contain [element1, element2, element3, element4].
This is not only useful when you need to build the list piecewise (i.e. and expansion of a list inside a choose_ switch)
but also as the YAML File Hierarchy will cause repeated variables to be overwritten. Adding a nested dictionary in this
way merges the add_<dictionary> content into the <dictionary> with priority to add_<dictionary> elements
inside the same file, and following the YAML File Hierarchy for different files.

Properties
• It is possible to have multiple add_ for the same variable in the same or even in different files. That means that

all the elements contained in the multiple add_ will be added to the list after the parsing.

Exceptions
Exceptions to add_ apply only to the environment and namelist _changes (see Environment and Namelist Changes
(_changes)). For variables of the type _changes, an add_ is only needed if the same _changes block repeats inside
the same file. Otherwise, the _changes block does not overwrite the same _changes block in other files, but their
elements are combined.

Example
In the configuration file for ECHAM (configs/components/echam/echam.yaml) the list input_files is declared
as:

[...]

input_files:
"cldoptprops": "cldoptprops"
"janspec": "janspec"
"jansurf": "jansurf"
"rrtmglw": "rrtmglw"
"rrtmgsw": "rrtmgsw"
"tslclim": "tslclim"
"vgratclim": "vgratclim"
"vltclim": "vltclim"

[...]

However different ECHAM scenarios require additional input files, for example the HIST scenario needs a MAC-SP
element to be added and we use the add_ functionality to do that:

[...]
choose_scenario:

[...]
(continues on next page)

6.2. ESM-Tools Extended YAML Syntax 19

ESM Tools r6.13 UserManual

(continued from previous page)

HIST:
forcing_files:

[...]
add_input_files:

MAC-SP: MAC-SP
[...]

An example for the _changes exception can be also found in the same ECHAM configuration file. Namelist changes
necessary for ECHAM are defined inside this file as:

[...]

namelist_changes:
namelist.echam:

runctl:
out_expname: ${general.expid}
dt_start:

- ${pseudo_start_date!year}
- ${pseudo_start_date!month}
[...]

This changes specified here will be combined with changes in other files (i.e. echam.namelist_changes in
the coupled setups AWICM or AWIESM configuration files), not overwritten. However, ECHAM’s version 6.3.
05p2-concurrent_radiation needs of further namelist changes written down in the same file inside a choose_
block and for that we need to use the add_ functionality:

[...]

choose_version:
[...]
6.3.05p2-concurrent_radiation:

[...]
add_namelist_changes:

namelist.echam:
runctl:

npromar: "${npromar}"
parctl:

[...]

6.2.4 Remove Elements from a List/Dictionary (remove_)

It is possible to remove elements inside list or dictionaries by using the remove_ functionality which syntax is:

remove_<dictionary>: [<element_to_remove1>, <element_to_remove2>, ...]

or:

remove_<dictionary>:
- <element_to_remove1>
- <element_to_remove2>
- ...

20 Chapter 6. YAML File Syntax

ESM Tools r6.13 UserManual

You can also remove specific nested elements of a dictionary separating the keys for the path by .:

remove_<model>.<dictionary>.<subkey1>.<subkey2>: [<element_to_remove1>, <element_to_
→˓remove2>, ...]

6.2.5 Math and Calendar Operations

The following math and calendar operations are supported in YAML files:

Arithmetic Operations

An element of a YAML file can be defined as the result of the addition, subtraction, multiplication or division of variables
with the format:

key: "$((${variable_1} operator ${variable_2} operator ... ${variable_n}))"

The esm_parser supports calendar operations through esm_calendar. When performing calendar operations, variables
that are not given in date format need to be followed by their unit for the resulting variable to be also in date format,
i.e.:

runtime: $((${end_date} - ${time_step}seconds))

time_step is a variable that is not given in date format, therefore, it is necessary to use seconds for runtime to be
in date format. Another example is to subtract one day from the variable end_date:

$((${end_date} - 1days))

The units available are:

Units supported by arithmetic operations
calendar units

seconds
minutes
days
months
years

Extraction of Date Components from a Date

It is possible to extract date components from a date variable. The syntax for such an operation is:

"${variable!date_component}"

An example to extract the year from the initial_time variable:

yearnew: "${initial_date!syear}"

If initial_date was 2001-01-01T00:00:00, then yearnew would be 2001.

The date components available are:

6.2. ESM-Tools Extended YAML Syntax 21

ESM Tools r6.13 UserManual

Date components
ssecond Second from a given date.
sminute Minute from a given date.
shour Hour from a given date.
sday Day from a given date.
smonth Month from a given date.
syear Year from a given date.
sdoy Day of the year, counting from Jan. 1.

6.2.6 Globbing

Globbing allows to use * as a wildcard in filenames for restart, input and output files. With this feature files can be
copied from/to the work directory whose filenames are not completely known. The syntax needed is:

file_list: common_pathname*common_pathname

Note that this also works together with the List Loops.

Example
The component NEMO produces one restart file per processor, and the part of the file name relative to the proces-
sor is not known. In order to handle copying of restart files under this circumstances, globbing is used in NEMO’s
configuration file (configs/components/nemo/nemo.yaml):

[...]

restart_in_sources:
restart_in: ${expid}_${prevstep_formatted}_restart*_${start_date_m1!syear!smonth!

→˓sday}_*.nc
restart_out_sources:

restart_out: ${expid}_${newstep_formatted}_restart*_${end_date_m1!syear!smonth!sday}_
→˓*.nc

[...]

This will include inside the restart_in_sources and restart_out_sources lists, all the files sharing the specified
common name around the position of the * symbol, following the same rules used by the Unix shell.

6.2.7 Environment and Namelist Changes (_changes)

The functionality _changes is used to control environment, namelist and coupling changes. This functionality can be
used from config files, but also runscripts. If the same type of _changes is used both in config files and a runscript
for a simulation, the dictionaries are merged following the hierarchy specified in the YAML File Hierarchy chapter.

22 Chapter 6. YAML File Syntax

ESM Tools r6.13 UserManual

Environment Changes

Environment changes are used to make changes to the default environment defined in the machine files (esm_tools/
configs/machines/<name_of_the_machine>.yaml). There are three types of environment changes:

Key Description
environment_changesChanges for both the compilation and the runtime environments.
compiletime_environment_changesChanges to the environment applied only during compilation.
runtime_environment_changesChanges to the environment applied only during runtime.

Two types of yaml elements can be nested inside an environment changes: add_module_actions and
add_export_vars.

• Use add_module_actions to include one module command or a list of them. The shell command module is
already invoked by ESM-Tools, therefore you only need to list the options (i.e. load/unload <module_name>).

• Use add_export_vars to export one or a list of environment variables. Shell command export is not needed
here, just define the variable as VAR_NAME: VAR_VALUE or as a nested dictionary.

For more information about esm_environment package, please check ESM Environment.

Example
fesom.yaml

The model FESOM needs some environment changes for compiling in Mistral and Blogin HPCs, which are included
in FESOM’s configuration file (esm_tools/configs/components/fesom/fesom.yaml):

[...]

compiletime_environment_changes:
add_export_vars:

takenfrom: fesom1
choose_computer.name:

mistral:
add_compiletime_environment_changes:

add_module_actions:
- "unload gcc"
- "load gcc/4.8.2"

blogin:
add_compiletime_environment_changes:

add_export_vars:
- "NETCDF_DIR=/sw/dataformats/netcdf/intel.18/4.7.3/skl/"
- "LD_LIBRARY_PATH=$NETCDF_DIR/lib/:$LD_LIBRARY_PATH"
- "NETCDF_CXX_INCLUDE_DIRECTORIES=$NETCDF_DIR/include"
- "NETCDF_CXX_LIBRARIES=$NETCDF_DIR/lib"
- "takenfrom='fesom1'"

runtime_environment_changes:
add_export_vars:

AWI_FESOM_YAML:
output_schedules:

-
vars: [restart]
unit: ${restart_unit}
first: ${restart_first}

(continues on next page)

6.2. ESM-Tools Extended YAML Syntax 23

ESM Tools r6.13 UserManual

(continued from previous page)

rate: ${restart_rate}
-

[...]

Independently of the computer, fesom.yaml exports always the takenfrom variable for com-
piling. Because compiletime_environment_changes is already defined for that purpose, any
compiletime_environment_changes in a choose_ block needs to have an add_ at the beginning.
Here we see that a choose_ block is used to select which changes to apply compile environment
(add_compiletime_environment_changes) depending on the HPC system we are in (Mistral or Blogin).
For more details on how to use the choose_ and add_ functionalities see Switches (choose_) and Append to an
Existing List (add_).

We also see here how runtime_environment_changes is used to add nested information about the output schedules
for FESOM into an AWI_FESOM_YAML variable that will be exported to the runtime environment.

Changing Namelists

It is also possible to specify namelist changes to a particular section of a namelist:

echam:
namelist_changes:

namelist.echam:
runctl:

l_orbvsop87: false
radctl:

co2vmr: 217e-6
ch4vmr: 540e-9
n2ovmr: 245e-9
cecc: 0.017
cobld: 23.8
clonp: -0.008
yr_perp: "remove_from_namelist"

In the example above, the namelist.echam file is changed in two specific chapters, first the section runctrl param-
eter l_orbsvop87 is set to false, and appropriate gas values and orbital values are set in radctl. Note that the
special entry "remove_from_namelist is used to delete entries. This would translate the following fortran namelist
(trucated):

&runctl
l_orbvsop87 = .false.

/

&radctl
co2vmr = 0.000217
ch4vmr = 5.4e-07
n2ovmr = 2.45e-07
cecc = 0.017
cobld = 23.8
clonp = -0.008

/

Note that, although we set l_orbsvop87 to be false, it is translated to the namelist as a fortran boolean (.false.).
This occurs because ESM-Tools “understands” that it is writing a fortan namelist and transforms the yaml booleans into

24 Chapter 6. YAML File Syntax

ESM Tools r6.13 UserManual

fortran.

For more examples, check the recipe in the cookbook (Changing Namelist Entries from the Runscript).

Coupling changes

Coupling changes (coupling_changes) are typically invoked in the coupling files (esm_tools/configs/
couplings/), executed before compilation of coupled setups, and consist of a list of shell commands to modify the
configuration and make files of the components for their correct compilation for coupling.

For example, in the fesom-1.4+echam-6.3.04p1.yaml used in AWICM-1.0, coupling_changes lists two sed
commands to apply the necessary changes to the CMakeLists.txt files for both FESOM and ECHAM:

components:
- echam-6.3.04p1
- fesom-1.4
- oasis3mct-2.8
coupling_changes:
- sed -i '/FESOM_COUPLED/s/OFF/ON/g' fesom-1.4/CMakeLists.txt
- sed -i '/ECHAM6_COUPLED/s/OFF/ON/g' echam-6.3.04p1/CMakeLists.txt

6.2.8 List Loops

This functionality allows for basic looping through a YAML list. The syntax for this is:

"[[list_to_loop_through-->ELEMENT_OF_THE_LIST]]"

where ELEMENT_OF_THE_LIST can be used in the same line as a variable. This is particularly useful to handle files
which names contain common strings (i.e. outdata and restart files, see File Dictionaries).

The following example uses the list loop functionality inside the fesom-2.0.yaml configuration file to specify which
files need to be copied from the work directory of runs into the general experiment outdata directory. The files to
be copied for runs modeling a couple of months in year 2001 are a_ice.fesom.2001.nc, alpha.fesom.2001.
nc, atmice_x.fesom.2001.nc, etc. The string .fesom.2001.nc is present in all files so we can use the list loop
functionality together with calendar operations (Math and Calendar Operations) to have a cleaner and more generalized
configure file. First, you need to declare the list of unshared names:

outputs: [a_ice,alpha,atmice_x, ...]

Then, you need to declare the outdata_sources dictionary:

outdata_sources:
"[[outputs-->OUTPUT]]": OUTPUT.fesom.${start_date!syear}.nc

Here, "[[outputs-->OUTPUT]]": provides the keys for this dictionary as a_ice, alpha, atmice_x, etc., and
OUTPUT is later used in the value to construct the complete file name (a_ice.fesom.2001.nc, alpha.fesom.2001.
nc, atmice_x.fesom.2001.nc, etc.).

Finally, outdata_targets dictionary can be defined to give different names to outdata files from different runs using
calendar operations:

outdata_targets:
"[[outputs-->OUTPUT]]": OUTPUT.fesom.${start_date!syear!smonth}.${start_date!sday}.

→˓nc

6.2. ESM-Tools Extended YAML Syntax 25

ESM Tools r6.13 UserManual

The values for the keys a_ice, alpha, atmice_x, . . . , will be a_ice.fesom.200101.01.nc, alpha.fesom.
200101.01.nc, atmice_x.fesom.200101.01.nc, . . . , for a January run, and a_ice.fesom.200102.01.nc,
alpha.fesom.200102.01.nc, atmice_x.fesom.200102.01.nc, . . . , for a February run.

6.2.9 File Dictionaries

File dictionaries are a special type of YAML elements that are useful to handle input, output, forcing, logging, binary
and restart files among others (see File Dictionary Types table), and that are normally defined inside the configuration
files of models. File dictionary’s keys are composed by a file dictionary type followed by _ and an option, and the
elements consist of a list of file_tags as keys with their respective file_paths as values:

type_option:
file_tag1: file_path1
file_tag2: file_path2

The file_tags need to be consistent throughout the different options for files to be correctly handled by ESM-
Tools. Exceptionally, sources files can be tagged differently but then the option files is required to link sources tags
to general tags used by the other options (see File Dictionary Options table below).

File Dictionary Types

Key Description
analysis User’s files for their own analysis tools (i.e. to be used in the pre-/postprocessing).
bin Binary files.
config Configure sources.
couple Coupling files.
ignore Files to be ignored in the copying process.
forcing Forcing files. An example is described at the end of this section.
log Log files.
mon Monitoring files.
outdata Output configuration files. A concise example is described in List Loops.
restart_in Restart files to be copied from the experiment directory into the run directory (see Experiment

Directory Structure), during the beginning of the computing phase (e.g. to copy restart files from
the previous step into the new run folder).

restart_out Restart files to be copied from the run directory into the experiment directory (see Experiment
Directory Structure), during the tidy and resubmit phase (e.g. to copy the output restart files from
a finished run into the experiment directory for later use the next run).

viz Files for the visualization tool.

26 Chapter 6. YAML File Syntax

ESM Tools r6.13 UserManual

File Dictionary Options

Key Description
sources Source file paths or source file names to be copied to the target path. Without this option no

files will be handled by ESM-Tools. If targets option is not defined, the files are copied into
the default target directory with the same name as in the source directory. In that case, if two
files have the same name they are both renamed to end in the dates corresponding to their run
(file_name.extension_YYYYMMDD_YYYYMMDD).

files Links the general file tags (key) to the source elements defined in sources. files is optional.
If not present, all source files are copied to the target directory, and the source tags need to be the
same as the ones in in_work and targets. If present, only the source files included in files
will be copied (see the ECHAM forcing files example below).

in_work Files inside the work directory of a run (<base_dir>/<experiment_name>/
run_date1_date2/work) to be transferred to the target directory. This files copy to the
target path even if they are not included inside the files option. in_work is optional.

targets Paths and new names to be given to files transferred from the sources directory to the target di-
rectory. A concised example is described in List Loops. targets is optional.

File paths can be absolute, but most of the type_option combinations have a default folder assigned, so that you can
choose to specify only the file name. The default folders are:

Default
folders

sources in_work targets

bin
config
ignore
forcing
log
outdata <base_dir>/

<experiment_name>/
run_date1_date2/work

<base_dir>/
<experiment_name>/
run_date1_date2/work

<base_dir>/
<experiment_name>/
outdata/<model>

restart_in
restart_out

Example for ECHAM forcing files
The ECHAM configuration file (<PATH>/configs/echam/echam.yaml) allows for choosing different scenarios for
a run. These scenarios depend on different combinations of forcing files. File sources for all cases are first stored in
echam.datasets.yaml (a further_reading file) as:

forcing_sources:
sst
"amipsst":

"${forcing_dir}/amip/${resolution}_amipsst_@YEAR@.nc":
from: 1870
to: 2016

"pisst": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-
→˓2379.nc"

sic
"amipsic":

"${forcing_dir}/amip/${resolution}_amipsic_@YEAR@.nc":
(continues on next page)

6.2. ESM-Tools Extended YAML Syntax 27

ESM Tools r6.13 UserManual

(continued from previous page)

from: 1870
to: 2016

"pisic": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sic_1880-
→˓2379.nc"

[...]

Here forcing_sources store all the sources necessary for all ECHAM scenarios, and tag them with source keys
(amipsst, pisst, . . .). Then, it is possible to choose among these source files inside the scenarios defined in echam.
yaml using forcing_files:

choose_scenario:
"PI-CTRL":

forcing_files:
sst: pisst
sic: pisic
aerocoarse: piaerocoarse
aerofin: piaerofin
aerofarir: piaerofarir
ozone: piozone

PALEO:
forcing_files:

aerocoarse: piaerocoarse
aerofin: piaerofin
aerofarir: piaerofarir
ozone: piozone

[...]

This means that for a scenario PI-CTRL the files that are handled by ESM-Tools will be exclusively the ones spec-
ified inside forcing_files, defined in the forcing_sources as pisst, pisic, piaerocoarse, piaerofin,
piaerofarir and piozone, and they are tagged with new general keys (sst, sic, . . .) that are common to all scenar-
ios. The source files not included in forcing_files won’t be used.

File movements

Inside the file dictionaries realm, it is possible to specify the type of movement you want to carry out (among copy,
link and move), for a specific file or file type, and for a given direction. By default all files are copied in all directions.

The syntax for defining a file movement for a given file type is:

<model>:
file_movements:

<file_type>:
<direction1>: <copy/link/move>
<direction2>: <copy/link/move>
[...]

where the file_type in one among the File Dictionary Types, and the direction one of the following ones:

28 Chapter 6. YAML File Syntax

ESM Tools r6.13 UserManual

Movement file directions
init_to_exp Initial files to the corresponding general folder
exp_to_run From general to the corresponding run folder
run_to_work From run to the work folder on that run
work_to_run From the work folder to the corresponding run folder
all_directions Directions not specifically defined, use this movement

It is also possible to do the same for specific files instead of for all files inside a file_type. The syntax logic is the
same:

<model>:
file_movements:

<file_key>:
<direction1>: <copy/link/move>
<direction2>: <copy/link/move>
[...]

where file_key is the key you used to identify your file inside the <file_type>_files, having to add to it _in or
_out if the file is a restart, in order to specify in which direction to apply this.

Movements specific to files are still compatible with the file_type option, and only the moves specifically defined
for files in the file_movements will differ from those defined using the file_type.

6.2.10 Accessing Variables from the Previous Run (prev_run)

It is possible to use the prev_run dictionary, in order to access values of variables from the previous run, in the current
run. The idea behind this functionality is that variables from the previous run can be called from the yaml files with a
very similar syntax to the one that would be used for the current run.

The syntax for that is as follows:

<your_var>: ${prev_run.<path>.<to>.<the>.<var>.<in>.<the>.<previous>.<run>}

For example, let’s assume we want to access the time_step from the previous run of a FESOM simulation and store it
in a variable called prev_time_step:

prev_time_step: ${prev_run.fesom.time_step}

Note: Only the single previous simulation loaded

Warning: Use this feature only when there is no other way of accessing the information needed. Note that, for ex-
ample, dates of the previous run are already available in the current run, under variables such as last_start_date,
parent_start_date, etc.

6.2. ESM-Tools Extended YAML Syntax 29

ESM Tools r6.13 UserManual

6.2.11 Error-handling and warning syntax

This syntax allows for error-handling and raising of warnings from the configuration files (i.e. yaml files in esm_tools/
configs). For including an error or a warning under a given condition (e.g. choose_ block for a given selection) use
the key words error or warning respectively (if more than one error/warning is present in the section of your file, use
add_error/warning to combine them).

The syntax in the yaml files for triggering warnings or errors is as follows:

warning/error:
<name>: # Name for the specific warning or error

message: "the message of the warning/error"
esm_tools_version: ">/</=/!=/version_number" # trigger it under certain ESM-

→˓Tools version conditions
ask_user_to_continue: True/False # Ask user about continuing or stopping the␣

→˓process, only for warnings, errors always kill the process

• <name>: what is displayed on the title of the error/warning

• message: the detailed message of the error/warning. You can use ESM-Tools variables here (${<variable>})

• esm_tools_version: only trigger this error/warning under given ESM-Tools versions

• ask_user_to_continue: if true, it asks the user whether they want to continue, after displaying the warning.
Only works for warnings as errors halt the simulation without asking

Example

recom:
choose_scenario:

HIST:
[...]

PI-CTRL:
[...]

"*":
add_warning:

"wrong scenario type":
message: "The scenario you specified (``${recom.scenario}``) is not␣

→˓supported!"
ask_user_to_continue: True

If you then define recom.scenario: hist instead of HIST then you’ll get the following:

wrong scenario type WARNING

Section: recom

Wrong scenario, scenario hist does not exist

? Do you want to continue (set general.ignore_config_warnings: False to avoid␣
→˓quesitoning)?

30 Chapter 6. YAML File Syntax

CHAPTER

SEVEN

YAML FILE HIERARCHY

7.1 Hierarchy of YAML configuration files

The following graph illustrates the hierarchy of the different YAML configuration files.

<runscript>.yaml

<setup>.yaml

 overwrites

<component>.yaml

<machine>.yaml

 overwrites

 overwrites

User

 edits

Developer

 edits

 edits

 edits

Fig. 1: ESM-Tools configuration files hierarchy

31

ESM Tools r6.13 UserManual

32 Chapter 7. YAML File Hierarchy

CHAPTER

EIGHT

ESM-TOOLS VARIABLES

The esm_parser is used to read the multiple types of YAML files contained in ESM-Tools (i.e. model and coupling
configuration files, machine configurations, runscripts, etc.). Each of these YAML files can contain two type of YAML
elements/variables:

• Tool-specific elements: YAML-scalars, lists or dictionaries that include instructions and information used by
ESM-Tools. These elements are predefined inside the esm_parser or other packages inside ESM-Tools and are
used to control the ESM-Tools functionality.

• Setup/model elements: YAML-scalars, lists of dictionaries that contain information defined in the model/setup
config files (i.e. awicm.yaml, fesom.yaml, etc.). This information is model/setup-specific and causes no ef-
fect unless it is combined with the tool-specific elements. For example, in fesom.yaml for FESOM-1.0 the
variable asforcing exists, however this means nothing to ESM-Tools by its own. In this case, this variable is
used in namelist_changes (a tool-specific element) to state the type of forcing to be used and this is what
actually makes a difference to the simulation. The advantage of having this variable already defined and called
in namelist_changes, in the fesom.yaml is that the front-end user can simply change the forcing type by
changing the value of asforcing (no need for the front-end user to use namelist_changes).

The following subsection lists and describes the Tool-specific elements used to operate ESM-Tools.

Note: Most of the Tool-specific elements can be defined in any file (i.e. configuration file, runscript, . . .) and, if
present in two files used by ESM-Tools at a time, the value is chosen depending on the ESM-Tools file priority/read
order (YAML File Hierarchy). Ideally, you would like to declare as many elements as possible inside the configuration
files, to be used by default, and change them in the runscripts when necessary. However, it is ultimately up to the user
where to setup the Tool-specific elements.

8.1 Tool-Specific Elements/Variables

The following keys should/can be provided inside configuration files for models (<PATH>/esm_tools/configs/
components/<name>/<name>.yaml), coupled setups (<PATH>/esm_tools/configs/setups/<name>/<name>.
yaml) and runscripts. You can find runscript templates in esm_tools/runscripts/templates/).

33

ESM Tools r6.13 UserManual

8.1.1 Installation variables

Key Description
model Name of the model/setup as listed in the config files (esm_tools/configs/components for

models and esm_tools/configs/setups for setups).
setup_name Name of the coupled setup.
version Version of the model/setup (one of the available options in the available_versions list).
avail-
able_versions

List of supported versions of the component or coupled setup.

git-repository Address of the model’s git repository.
branch Branch from where to clone.
destination Name of the folder where the model is downloaded and compiled, in a coupled setup.
comp_command Command used to compile the component.
install_bins Path inside the component folder, where the component is compiled by default. This path is

necessary because, after compilation, ESM-Tools needs to copy the binary from this path to the
<component/setup_path>/bin folder.

34 Chapter 8. ESM-Tools Variables

ESM Tools r6.13 UserManual

8.1.2 Runtime variables

Key Description
account User account of the HPC system to be used to run the experiment.
model_dir Absolute path of the model directory (where it was installed by esm_master).
setup_dir Absolute path of the setup directory (where it was installed by esm_master).
executable Name of the component executable file, as it shows in the <component/setup_path>/bin after

compilation.
compute_time Estimated computing time for a run, used for submitting a job with the job scheduler.
time_step Time step of the component in seconds.
lresume Boolean to indicate whether the run is an initial run or a restart.
pool_dir Path to the pool directory to read in mesh data, forcing files, inputs, etc.
namelists List of namelist files required for the model.
namelist_changesFunctionality to handle changes in the namelists from the yaml files (see Changing Namelists).
nproc Number of processors to use for the model.
nproca/nprocb Number of processors for different MPI tasks/ranks. Incompatible with nproc.
base_dir Path to the directory that will contain the experiment folder (where the experiment will be run and

data will be stored).
post_processing Boolean to indicate whether to run postprocessing or not.
File Dictio-
naries

YAML dictionaries used to handle input, output, forcing, logging, binary and restart files (see File
Dictionaries).

expid ID of the experiment. This variable can also be defined when calling esm_runscripts with the
-e flag.

ini_restart_exp_idID of the restarted experiment in case the current experiment has a different expid. For this
variable to have an effect lresume needs to be true (e.g. the experiment is a restart).

ini_restart_dir Path of the restarted experiment in case the current experiment runs in a different directory. For
this variable to have an effect lresume needs to be true (e.g. the experiment is a restart).

execu-
tion_command

Command for executing the component, including ${executable} and the necessary flags.

heteroge-
neous_parallelization

A boolean that controls whether the simulation needs to be run with or without heterogeneous
parallelization. When false OpenMP is not used for any component, independently of the value
of omp_num_threads defined in the components. When true, open_num_threads needs to
be specified for each component using OpenMP. heterogeneous_parallelization variable
needs to be defined inside the computer section of the runscript. See Heterogeneous Paral-
lelization Run (MPI/OpenMP) for examples.

omp_num_threadsA variable to control the number of OpenMP threads used by a component during an hetero-
geneous parallelization run. This variable has to be defined inside the section of the com-
ponents for which OpenMP needs to be used. This variable will be ignored if computer.
heterogeneous_parallelization is not set to true.

8.1. Tool-Specific Elements/Variables 35

ESM Tools r6.13 UserManual

8.1.3 Calendar variables

Key Description
initial_date Date of the beginning of the simulation in the format YYYY-MM-DD. If the simulation is a

restart, initial_date marks the beginning of the restart.
final_date Date of the end of the simulation in the format YYYY-MM-DD.
start_date Date of the beginning of the current run.
end_date Date of the end of the current run.
current_date Current date of the run.
next_date Next run initial date.
nyear,
nmonth,
nday, nhour,
nminute

Number of time unit per run. They can be combined (i.e. nyear: 1 and nmonth: 2 implies
that each run will be 1 year and 2 months long).

parent_date Ending date of the previous run.

8.1.4 Coupling variables

Key Description
grids List of grids and their parameters (i.e. name, nx, ny, etc.).
cou-
pling_fields

List of coupling field dictionaries containing coupling field variables.

nx When using oasis3mct, used inside grids to define the first dimension of the grid.
ny When using oasis3mct, used inside grids to define the second dimension of the grid.
cou-
pling_methods

List of coupling methods and their parameters (i.e. time_transformation, remapping, etc.).

time_transformationTime transformation used by oasis3mct, defined inside coupling_methods.
remapping Remappings and their parameters, used by oasis3mct, defined inside coupling_methods.

8.1.5 Other variables

Key Description
metadata List to incude descriptive information about the model (i.e. Authors, Institute,

Publications, etc.) used to produce the content of Supported Models. This information should
be organized in nested keys followed by the corresponding description. Nested keys do not receive
a special treatment meaning that you can include here any kind of information about the model.
Only the Publications key is treated in a particular way: it can consist of a single element or a
list, in which each element contains a link to the publication inside <> (i.e. - Title, Authors,
Journal, Year. <https://doi.org/...>).

36 Chapter 8. ESM-Tools Variables

CHAPTER

NINE

SUPPORTED MODELS

9.1 AMIP

9.2 DEBM

Institute AWI
Description dEBM is a surface melt scheme to couple ice and climate models in paleo applications.
Publications Krebs-Kanzow, U., Gierz, P., and Lohmann, G., Brief communication: An Ice surface melt

scheme including the diurnal cycle of solar radiation, The Cryosphere Discuss., accepted
for publication

License MIT

9.3 ECHAM

Institute MPI-Met
Description The ECHAM atmosphere model, major version 6
Authors Bjorn Stevens (bjorn.stevens@mpimet.mpg.de) among others at MPI-Met
Publications Atmosphericcomponent of the MPI-M earth system model: ECHAM6
License Please make sure you have a license to use ECHAM. Otherwise downloading ECHAM

will already fail. To use the repository on gitlab.dkrz.de/modular_esm/echam.git, regis-
ter for the MPI-ESM user forum at https://mpimet.mpg.de/en/science/modeling-with-icon/
code-availability/mpi-esm-users-forum and send a screenshot to either dirk.barbi@awi.de,
deniz.ural@awi.de or miguel.andres-martinez@awi.de

9.4 ESM_INTERFACE

Institute Alfred Wegener Institute
Description Coupling interface for a modular coupling approach of ESMs.
Authors Nadine Wieters (nadine.wieters@awi.de)
Publications `None`_
License None

37

https://doi.org/10.5194/tc-2018-130
https://doi.org/10.5194/tc-2018-130
https://doi.org/10.5194/tc-2018-130
mailto:bjorn.stevens@mpimet.mpg.de
https://doi.org/10.1002/jame.20015
https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability/mpi-esm-users-forum
https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability/mpi-esm-users-forum
mailto:dirk.barbi@awi.de
mailto:deniz.ural@awi.de
mailto:miguel.andres-martinez@awi.de
mailto:nadine.wieters@awi.de

ESM Tools r6.13 UserManual

9.5 FESOM

Institute Alfred Wegener Institute for Polar and Marine Research (AWI)
Description Multiresolution sea ice-ocean model that solves the equations of motion on unestructured

meshes
Authors Dmitry Sidorenko (Dmitry.Sidorenko@awi.de), Nikolay V. Koldunov (niko-

lay.koldunov@awi.de)
Publications Danilov et al. 2004: A finite-element ocean model: principles and evaluation

Wang et al. 2014: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation
of an ocean general circulation model.

License www.fesom.de

9.6 FESOM_MESH_PART

Description The FESOM Mesh Partioner (METIS)

9.7 HDMODEL

9.8 ICON

Institute MPI-Met
Description The ICON atmosphere model, major version 2
Authors Marco Giorgetta (marco.giorgetta@mpimet.mpg.de), Peter Korn, Christian Reick, Reinhard

Budich
Publications ICON-A, the Atmosphere Component of the ICON Earth System Model: I. Model Descrip-

tion
License Please make sure you have a license to use ICON. In case you are unsure, please contact

redmine. . .

9.9 JSBACH

9.10 MPIOM

Institute MPI-Met
Description The ocean-sea ice component of the MPI-ESM. MPIOM is a primitive equation model (C-

Grid, z-coordinates, free surface) with the hydrostatic and Boussinesq assumptions made.
Authors Till Maier-Reimer, Helmuth Haak, Johann Jungclaus
Publications Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM)

the ocean component of the MPI-Earth system model
The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordi-
nates

License Please make sure you have a licence to use MPIOM. In case you are unsure, please contact
redmine. . .

38 Chapter 9. Supported Models

mailto:Dmitry.Sidorenko@awi.de
mailto:nikolay.koldunov@awi.de
mailto:nikolay.koldunov@awi.de
https://doi.org/10.1016/s1463-5003(02)00063-x
https://doi.org/10.5194/gmd-7-663-2014
https://doi.org/10.5194/gmd-7-663-2014
mailto:marco.giorgetta@mpimet.mpg.de
https://doi.org/10.1029/2017MS001242
https://doi.org/10.1029/2017MS001242
https://doi.org/10.1002/jame.20023
https://doi.org/10.1002/jame.20023
https://doi.org/10.1016/S1463-5003(02)00015-X
https://doi.org/10.1016/S1463-5003(02)00015-X

ESM Tools r6.13 UserManual

9.11 NEMO

Organization Nucleus for European Modelling of the Ocean
Institute IPSL
Description NEMO standing for Nucleus for European Modelling of the Ocean is a state-of-the-art mod-

elling framework for research activities and forecasting services in ocean and climate sci-
ences, developed in a sustainable way by a European consortium.

Authors Gurvan Madec and NEMO System Team (nemo_st@locean-ipsl.umpc.fr)
Publications NEMO ocean engine
License Please make sure you have a license to use NEMO. In case you are unsure, please contact

redmine. . .

9.12 NEMOBASEMODEL

9.13 OASIS3MCT

9.14 OpenIFS

Institute ECMWF
Description OpenIFS provides research institutions with an easy-to-use version of the ECMWF IFS (In-

tegrated Forecasting System).
Authors Glenn Carver (openifs-support@ecmwf.int)
Website https://www.ecmwf.int/en/research/projects/openifs
License Please make sure you have a licence to use OpenIFS. In case you are unsure, please contact

redmine. . .

9.15 PISM

Institute UAF and PIK
Description The Parallel Ice Sheet Model (PISM) is an open source, parallel, high-resolution ice sheet

model.
Authors Ed Bueler, Jed Brown, Anders Levermann, Ricarda Winkelmann and many more (uaf-

pism@alaska.edu)
Publications Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet

model
The Potsdam parallel ice sheet model (PISM-PIK) - Part 1: Model description

License GPL 3.0

9.11. NEMO 39

mailto:nemo_st@locean-ipsl.umpc.fr
http://doi.org/10.5281/zenodo.1464816
mailto:openifs-support@ecmwf.int
https://www.ecmwf.int/en/research/projects/openifs
mailto:uaf-pism@alaska.edu
mailto:uaf-pism@alaska.edu
https://doi.org/10.1029/2008JF001179
https://doi.org/10.1029/2008JF001179
https://doi.org/10.5194/tc-5-715-2011

ESM Tools r6.13 UserManual

9.16 RECOM

Institute Alfred Wegener Institute for Polar and Marine Research (AWI)
Description REcoM (Regulated Ecosystem Model) is an ecosystem and biogeochemistry model.
Authors Judith Hauck, Ozgur Gurses
Publications Seasonally different carbon flux changes in the Southern Ocean in response to the southern

annular mode
Arctic Ocean biogeochemistry in the high resolution FESOM 1.4-REcoM2 model

License https://recom.readthedocs.io/en/latest/index.html

9.17 RNFMAP

9.18 SAMPLE

9.19 SCOPE

Institute Alfred Wegener Institute
Description The Script-Based Coupler
Authors Paul Gierz (pgierz@awi.de)

9.20 TUX

Institute wiki
Description Tux image
Authors who knows
Publications `are you serious?`_
License GPL

9.21 VILMA

9.22 XIOS

Institute IPSL and CEA
Description A library dedicated to I/O management in climate codes.
Authors Yann Meurdesoif (yann.meurdesoif@cea.fr)
Website https://portal.enes.org/models/software-tools/xios
License Please make sure you have a licence to use XIOS. In case you are unsure, please contact

redmine. . .

40 Chapter 9. Supported Models

https://doi.org/10.1002/2013GB004600
https://doi.org/10.1002/2013GB004600
https://doi.org/10.1016/j.pocean.2018.09.006
https://recom.readthedocs.io/en/latest/index.html
mailto:pgierz@awi.de
mailto:yann.meurdesoif@cea.fr
https://portal.enes.org/models/software-tools/xios

ESM Tools r6.13 UserManual

9.23 YAC

Information For more information about YAC please go to the webpage: https://dkrz-sw.gitlab-pages.
dkrz.de/yac/index.html

9.24 YAXT

Information For more information about YAXT please . . .
Description yaxt
Authors
Publications ``_
License

9.23. YAC 41

https://dkrz-sw.gitlab-pages.dkrz.de/yac/index.html
https://dkrz-sw.gitlab-pages.dkrz.de/yac/index.html

ESM Tools r6.13 UserManual

42 Chapter 9. Supported Models

CHAPTER

TEN

ESM MASTER

10.1 Usage: esm_master

To use the command line tool esm_master, just enter at a prompt:

$ esm_master

The tool may ask you to configure your settings; which are stored in your home folder under ${HOME}/.esmtoolsrc.
A list of avaiable models, coupled setups, and available operations are printed to the screen, e.g.:

setups:
awicm:

1.0: ['comp', 'clean', 'get', 'update', 'status', 'log', 'install', 'recomp']
CMIP6: ['comp', 'clean', 'get', 'update', 'status', 'log', 'install', 'recomp']
2.0: ['comp', 'clean', 'get', 'update', 'status', 'log', 'install', 'recomp']

[...]

As can be seen in this example, esm_master supports operations on the coupled setup awicm in the versions 1.0,
CMIP6 and 2.0; and what the tool can do with that setup. You execute esm_master by calling:

$ esm_master operation-software-version,

e.g.:

$ esm_master install-awicm-2.0

By default, esm_master supports the following operations:

get:
Cloning the software from a repository, currently supporting git and svn

conf:
Configure the software (only needed by mpiesm and icon at the moment)

comp:
Compile the software. If the software includes libraries, these are compiled first. After compiling the binaries
can be found in the subfolders bin and lib.

clean:
Remove all the compiled object files.

install:
Shortcut to get, then conf, then comp.

43

ESM Tools r6.13 UserManual

recomp:
Shortcut to conf, then clean, then comp.

update:
Get the newest commit of the software from the repository.

status:
Get the state of the local database of the software (e.g. git status)

log:
Get a list of the last commits of the local database of the software (e.g. git log)

To download, compile, and install awicm-2.0; you can say:

$ esm_master install-awicm-2.0

This will trigger a download, if needed a configuration, and a compilation process. Similarly, you can recompile with
recomp-XXX, clean with clean-XXX, or do individual steps, e.g. get, configure, comp.

The download and installation will always occur in the current working directory.

You can get further help with:

$ esm_master --help

10.2 Configuring esm-master for Compile-Time Overrides

It is possible that some models have special compile-time settings that need to be included, overriding the machine
defaults. Rather than placing these changes in configs/machines/NAME.yaml, they can be instead placed in special
blocks of the component or model configurations, e.g.:

compiletime_environment_changes:
add_export_vars:

[...]

The same is also possible for specifying runtime_environment_changes.

44 Chapter 10. ESM Master

CHAPTER

ELEVEN

ESM-VERSIONS

New with the Tools version 3.1.5, you will find an executable in your path called esm_version. This was added by
Paul Gierz to help the user / developer to keep track of / upgrade the python packages belonging to ESM Tools.

11.1 Usage

It doesn’t matter from which folder you call esm_versions. You have two subcommands:

esm_versions check gives you the version number of each
installed esm python package

esm_versions upgrade upgrades all installed esm python
packages to the newest version
of the release branch

Notice that you can also upgrade single python packages, e.g.:

esm_versions upgrade esm_parser upgrades only the package esm_parser
to the newest version of the release
branch

And yes, esm_versions can upgrade itself.

11.2 Getting ESM-Versions

As was said before, if you have the Tools with a version newer than 3.1.4, you should already have esm_versions in
your path. In case you are on an older version of the Tools, or it is missing because of problems, you need to remove
the installed python packages by hand one last time, and then reinstall them using the installer:

1. Make sure to push all your local changes to branches of the repos, or save them otherwise!

2. Remove the installed python libs:

$ rm -rf ~/.local/lib/python-whatever_your_version/site-packages/esm*

3. Remove the installed executables:

$ rm -rf ~/.local/bin/esm*

4. Upgrade the repository esm_tools:

45

ESM Tools r6.13 UserManual

$ cd path/to/esm_tools
$ git checkout release
$ git pull

5. Re-install the python packages:

$./install.sh

You should now be on the most recent released version of the tools, and esm_versions should be in your PATH.

46 Chapter 11. ESM-Versions

CHAPTER

TWELVE

ESM RUNSCRIPTS

12.1 Usage

esm_runscripts [-h] [-d] [-v] [-e EXPID] [-c] [-P] [-j LAST_JOBTYPE]
[-t TASK] [-p PID] [-x EXCLUDE] [-o ONLY]
[-r RESUME_FROM] [-U]
runscript

47

ESM Tools r6.13 UserManual

12.2 Arguments

Op-
tional
argu-
ments

Description

-h, –help Show this help message and exit.
-d, –de-
bug

Print lots of debugging statements.

-v, –ver-
bose

Be verbose.

-e
EXPID,
–expid
EXPID

The experiment ID to use. Default test.

-c,
–check

Run in check mode (don’t submit job to supercomputer).

-P, –pro-
file

Write profiling information (esm-tools).

-j
LAST_JOBTYPE,
–last_jobtype
LAST_JOBTYPE

Write the jobtype this run was called from (esm-tools internal).

-t TASK,
–task
TASK

The task to run. Choose from: compute, post, couple, tidy_and_resubmit.

-p PID,
–pid
PID

The PID of the task to observe.

-x
EXCLUDE,
–exclude
EXCLUDE

E[x]clude this step.

-o ONLY,
–only
ONLY

[o]nly do this step.

-r
RESUME_FROM,
–resume-
from
RESUME_FROM

[r]esume from the specified run/step (i.e. to resume a second run you’ll need to use -r 2).

-U, –up-
date

[U]pdate the runscript in the experiment folder and associated files

–update-
filetypes

Updates the requested files from external sources in a currently ongoing simulation. We strongly advise
against using this option unless you really know what you are doing.

-i,
–inspect

This option can be used to [i]nspect the results of a previous run, for example one prepared with -c.
This argument needs an additional keyword. Choose among: overview (gives you the same litte mes-
sage you see at the beginning of each run, lastlog (displays the last log file), explog (the overall
experiment logfile), datefile (the overall experiment logfile), config (the Python dict that contains
all information), size (the size of the experiment folder), a filename or a directory name output the
content of the file /directory if found in the last run_ folder.)

48 Chapter 12. ESM Runscripts

ESM Tools r6.13 UserManual

12.3 Running a Model/Setup

ESM-Runscripts is the ESM-Tools package that allows the user to run the experiments. ESM-Runscripts reads the
runscript (either a bash or yaml file), applies the required changes to the namelists and configuration files, submits the
runs of the experiment to the compute nodes, and handles and organizes restart, output and log files. The command to
run a runscript is:

$ esm_runscripts <runscript.yaml/.run> -e <experiment_ID>

The runscript.yaml/.run should contain all the information regarding the experiment paths, and particular config-
urations of the experiment (see the yaml:Runscripts section for more information about the syntax of yaml runscripts).
The experiment_ID is used to identify the experiment in the scheduler and to name the experiment’s directory (see
Experiment Directory Structure). Omitting the argument -e <experiment_ID> will create an experiment with the
default experimant ID test.

ESM-Runscript allows to run an experiment check by adding the -c flag to the previous command. This check performs
all the system operations related to the experiment that would take place on a normal run (creates the experiment
directory and subdirectories, copies the binaries and the necessary restart/forcing files, edits the namelists, . . .) but stops
before submitting the run to the compute nodes. We strongly recommend running first a check before submitting an
experiment to the compute nodes, as the check outputs contains already valuable information to understand whether
the experiment will work correctly or not (we strongly encourage users to pay particular attention to the Namelists and
the Missing files sections of the check’s output).

12.4 Job Phases

The following table summarizes the job phases of ESM-Runscripts and gives a brief description. . . .

12.5 Running only part of a job

It’s possible to run only part of a job. This is particularly interesting for development work; when you might only want
to test a specific phase without having to run a whole simulation.

As an example; let’s say you only want to run the tidy phase of a particular job; which will move things from the
particular run folder to the overall experiment tree. In this example; the experiment will be called test001:

esm_runscripts ${PATH_TO_USER_CONFIG} -t tidy_and_resubmit

12.6 Experiment Directory Structure

All the files related to a given experiment are saved in the Experiment Directory. This includes among others model
binaries, libraries, namelists, configuration files, outputs, restarts, etc. The idea behind this approach is that all the
necessary files for running an experiment are contained in this folder (the user can always control through the runscript
or configuration files whether the large forcing and mesh files also go into this folder), so that the experiment can be
reproduced again, for example, even if there were changes into one of the model’s binaries or in the original runscript.

The path of the Experiment Directory is composed by the general.base_dir path specified in the runscript (see
yaml:Runscripts syntax) followed by the given experiment_ID during the esm_runscripts call:

<general.base_dir>/<experiment_ID>

12.3. Running a Model/Setup 49

ESM Tools r6.13 UserManual

Gather
 information

Prepare
 data

 folders

Modify
 data

 folders

Prepare
 work
 folder

Run
 simulation

Move
 output
 to data
 folders

Post-
processing

Resubmit
 simulation

Fig. 1: ESM-Tools job phases

50 Chapter 12. ESM Runscripts

ESM Tools r6.13 UserManual

The main experiment folder (General exp dir) contains the subfolders indicated in the graph and table below.
Each of these subfolders contains a folder for each component in the experiment (i.e. for an AWI-CM experiment the
outdata folder will contain the subfolders echam, fesom, hdmodel, jsbach, oasis3mct).

The structure of the run folder run_YYYYMMDD-YYYYMMDD (Run dir in the graph) replicates that of the general ex-
periment folder. Run directories are created before each new run and they are useful to debug and restart experiments
that have crashed.

12.6. Experiment Directory Structure 51

ESM Tools r6.13 UserManual

General exp dir Run dirAWICM example:

analysis

bin

hdmodelconfig

couple ...

forcing

input

log

mon

outdata

restart

run_<DATE>

scripts unknown

unknown

viz

work

analysis

bin

config

couple...

forcing

input

log

mon

outdata

restart

scripts

viz

work

namelistsbinaries

restart files

output files

ESM-ToolsModel installation folder

echam

fesom

jsbach

oasis3mct

Fig. 2: Experiment directory structure
52 Chapter 12. ESM Runscripts

ESM Tools r6.13 UserManual

Subfolder Files Description
analysis user’s files Results of user’s “by-hand” analysis

can be placed here.
bin component binaries Model binaries needed for the exper-

iment.
config

• <experiment_ID>_ fin-
ished_config.yaml

• namelists
• other configuration files

Configuration files for the ex-
periment including namelists
and other files specified in
the component’s configuration
files (<PATH>/esm_tools/
configs/<component>/
<component>.yaml, see
File Dictionaries). The file
<experiment_ID>_finished_config.
yaml is located at the base of the
config folder and contains the
whole ESM-Tools variable space
for the experiment, resulting from
combining the variables of the
runscript, setup and component
configuration files, and the machine
environment file.

couple coupling related files Necessary files for model couplings.
forcing forcing files Forcing files for the experiment.

Only copied here when specified by
the user in the runscript or in the
configuration files (File Dictionar-
ies).

input input files Input files for the experiment. Only
copied here when specified by the
user in the runscript or in the con-
figuration files (File Dictionaries).

log
• <experiment_ID>_

<setup_name>.log
• component log files

Experiment log files. The com-
ponent specific log files are
placed in their respective sub-
folder. The general log file
<experiment_ID>_<setup_name>.
log reports on the ESM-Runscripts
Job Phases and is located at the base
of the log folder. Log file names
and copying instructions should be
included in the configuration files
of components (File Dictionaries).

mon user’s files Monitoring scripts created by the
user can be placed here.

outdata outdata files Outdata files are placed here. Out-
data file names and copying instruc-
tions should be included in the con-
figuration files of components (File
Dictionaries).

restart restart files Restart files are placed here. Restart
file names and copying instructions
should be included in the configura-
tion files of components (File Dic-
tionaries).

run_YYYYMMDD-
YYYYMMDD

run files Run folder containing all the files
for a given run. Folders contained
here have the same names as the
ones contained in the general ex-
periment folder (analysis, bin,
config, etc). Once the run is fin-
ished the run files are copied to the
general experiment folder.

scripts
• esm_tools folder contain-

ing:
– all namelists
– all functions

• <experiment_ID>_
compute_YYYYMMDD-
YYYYMMDD.run>

• <experiment_ID>_
compute_YYYYMMDD-
YYYYMMDD_<JobID>.log

• <experiment_ID>_
<setup_name>.date

• original runscript
• file.log
• hostfile_srun

Contains all the scripts needed
for the experiment. A sub-
folder esm_tools includes all
the config files and namelists of
ESM-Tools (a copy of the configs
and namelists folders in the
esm_tools installation folder).
It also contains the .run files
to be submitted to slurm. The file
<experiment_ID>_compute_YYYYMMDD_YYYYMMDD_<JobID>.
log is the log file for
the experiment run. The
<experiment_ID>_<setup_name>.
date indicates the finishing date of
the last run.

unknown Folder where all the unknown files
from run_YYYYMMDD_YYYYMMDD/
work are copied.

viz user’s files Aimed for user’s visualization
scripts.

work
• component files
• output files before copied to

the output folder
• restart files before copied to

the restart folder

The work folder inside the
run_YYYYMMDD_YYYYMMDD folder
is the main directory where the
components are executed. Output
and restart files are generated
here before being copied to their
respective folders.

12.6. Experiment Directory Structure 53

ESM Tools r6.13 UserManual

If one file was to be copied in a directory containing a file with the same name, both files get renamed by the addition
of their start date and end dates at the end of their names (i.e. fesom.clock_YYYYMMDD-YYYYMMDD).

Note: Having a general and several run subfolders means that files are duplicated and, when models consist of several
runs, the general directory can end up looking very untidy. Run folders were created with the idea that they will be
deleted once all files have been transferred to their respective folders in the general experiment directory. The default is
not to delete this folders as they can be useful for debugging or restarting a crashed simulation, but the user can choose
to delete them (see Cleanup of run_ directories).

12.7 Cleanup of run_ directories

12.8 Debugging an Experiment

To debug an experiment we recommend checking the following files that you will find, either in the general experiment
directory or in the run subdirectory:

• The ESM-Tools variable space file config/<experiment_ID>_finished_config.yaml.

• The run log file run_YYYYMMDD-YYYYMMDD/<experiment_ID>_compute_YYYYMMDD-YYYYMMDD_<JobID>.
log`.

For interactive debugging, you may also add the following to the general section of your configuration file. This will
enable the pdb Python debugger, and allow you to step through the recipe.

general:
debug_recipe: True

12.9 Setting the file movement method for filetypes in the runscript

By default, esm_runscripts copies all files initially into the first run_-folder, and from there to work. After the run,
outputs, logs, restarts etc. are copied from work to run_, and then moved from there to the overall experiment folder.
We chose that as the default setting as it is the safest option, leaving the user with everything belonging to the experiment
in one folder. It is also the most disk space consuming, and it makes sense to link some files into the experiment rather
than copy them.

As an example, to configure esm_runscripts for an echam-experiment to link the forcing and inputs, one can add the
following to the runscript yaml file:

echam:
file_movements:

forcing:
all_directions: "link"

input:
init_to_exp: "link"
exp_to_run: "link"
run_to_work: "link"
work_to_run: "link"

54 Chapter 12. ESM Runscripts

https://docs.python.org/3/library/pdb.html#debugger-commands

ESM Tools r6.13 UserManual

Both ways to set the entries are doing the same thing. It is possible, as in the input case, to set the file movement method
independently for each of the directions; the setting all_directions is just a shortcut if the method is identical for
all of them.

12.9. Setting the file movement method for filetypes in the runscript 55

ESM Tools r6.13 UserManual

56 Chapter 12. ESM Runscripts

CHAPTER

THIRTEEN

ESM RUNSCRIPTS - USING THE WORKFLOW MANAGER

13.1 Introduction

Starting with Release 6.0, esm_runscripts allows the user to define additional subjobs for data processing, arrange them
in clusters, and set the order of execution of these and the standard runjob parts in a flexible and short way from the
runscript. This is applicable for both pre- and postprocessing, but especially useful for iterative coupling jobs, like e.g.
coupling pism to vilma (see below). In this section we explain the basic concept, and the keywords that have to be set
in the runscript to make use of this feature.

13.2 Subjobs of a normal run

Even before the addition of the workflow manager, the run jobs of esm_runscript were split into different subjobs, even
though that was mostly hidden from the user’s view. Before Release 6.0, these subjobs were:

compute --> tidy_and_resubmit (incl. wait_and_observe + resubmit next run)

Technically, wait_and_observe was part of the tidy_and_resubmit job, as was the resubmission, including above
only for the purpose of demonstrating the difference to the new standard workflow, which is now (post-Release 6.0):

newrun --> prepcompute --> compute --> observe_compute --> tidy (+ resubmit next run)

Other than before adding the workflow manager, these standard subjobs are all separated and independant subjobs, each
submitted (or started) by the previous subjob in one of three ways (see below). The splitting of the old compute job
into newrun, prepcompute and compute on one side, and tidy_and_resubmit into observe and tidy, was necessary to
enable the user to insert coupling subjobs for iterative coupling at the correct places. Here is what each of the standard
subjobs does:

Subjob Function
newrun Initializes a new experiment, only very basic stuff, like creating (empty) folders needed by any of the

following subjobs. NEEDS TO BE THE FIRST SUBJOB OF ANY EXPERIMENT.
prepcom-
pute

Prepares the compute job. All the (Python) functionality that needs to be run, up to the job submission.
Includes copying files, editing namelists, write batch scripts, etc.

compute Actual model integration, nothing else. No Python codes involved.
ob-
serve_compute

Python job running at the same time as compute, checking if the compute job is still running, looking
for some known errors for monitoring / job termination.

tidy Sorts the produced outputs, restarts and log files into the correct folders, checks for missing and un-
known files, builds coupler restart files if not present

It is important to understand that none of this has to be edited by the users, this is the default setup.

57

ESM Tools r6.13 UserManual

13.3 Keywords available for defining additional data processing sub-
jobs

The workflow manager is intended to include shell scripted data processing jobs into the esm_runscripts workflow, so
several things have to be defined:

• Name of the script to be run

• Name of the python script used for setting up the environment

• Name of the folder in which both of the above scripts can be found

• Information on how often the subjob should be called

• Information on between which other subjobs the new subjob should be inserted into the workflow

• In case it isn’t clear: Which subjob should resubmit the next run.

The keywords used to define that are:

Key-
word

Function

work-
flow

Chapter headline in a model’s section, indicating that alterations to the standard workflow will be defined
here

sub-
job_clusters

Section in the workflow chapter, containing the information on additional subjob_clusters. A sub-
job_cluster is a collection of subjobs run from the same batch script. Each subjob needs to belong to
one cluster, if none is defined, each subjob will automatically get assigned to its own cluster. Each entry
in subjob_clusters is a dict, with the outermost key being the (arbitrary) name of the cluster.

sub-
jobs

Section in the workflow chapter, containing the information on additional subjobs.

run_after
/
run_before

Entry in spevifications of a subjob_cluster, to define before or after which other cluster of the workflow this
cluster is supposed to run. Only one of the two should be specified. Can also be used in the specifications
of subjobs if these subjobs get a corresponding cluster auto-assigned.

script:
script_dir:
call_function:
env_preparation:
next_run_triggered_by:

13.4 Example 1: Adding an additional postprocessing subjob

In the case of a simple echam postprocessing job, the corresponding section in the runscript could look
like this:

echam:
[...other information...]

workflow:
next_run_triggered_by: tidy

subjobs:
my_new_subjob:

nproc: 1
(continues on next page)

58 Chapter 13. ESM Runscripts - Using the Workflow Manager

ESM Tools r6.13 UserManual

(continued from previous page)

run_after: tidy
script_dir:
script:
call_function:
env_preparation:

13.5 Example 2: Adding an additional preprocessing subjob

A preprocessing job basically is configured the same way as a postprocessing job, but the run_after entry is repl

13.6 Example 3: Adding a iterative coupling job

Writing a runscript for iterative coupling using the workflow manager requires some more changes. The principal idea
is that each coupling step consists of two data processing jobs, one pre- and one postprocessing job. This is done this
way as to make the coupling modular, and enable the modeller to easily replace one of the coupled components by a
different implementation. This is of course up to the user to decide, but we generally advise to do so, and the iterative
couplings distributed with ESM-Tools are organized this way.

13.5. Example 2: Adding an additional preprocessing subjob 59

ESM Tools r6.13 UserManual

60 Chapter 13. ESM Runscripts - Using the Workflow Manager

CHAPTER

FOURTEEN

ESM ENVIRONMENT

The package esm_environment takes care of generating the environments for the different HPCs supported by ESM-
Tools. This is done through the use of the EnvironmentInfos class inside the different ESM-Tools packages.

For the correct definition of an environment for an HPC a yaml file for that system needs to be included inside the
esm_tools package inside the configs/machines/ folder (e.g. ollie.yaml). This file should contain all the re-
quired preset variables for that system and the environment variables module_actions and export_vars.

14.1 Environment variables

module_actions (list)
A list of module actions to be included in the compilation and run scripts generated by esm_master and
esm_runscripts respectively, such as module load netcdf, module unload netcdf, module purge,
etc. The syntax of this list is such as that of the command that would be normally used in shell, but omitting the
module word, for example:

module_actions:
- "purge"
- "load netcdf"

This variable also allows for sourcing files by adding a member to the list such as source
<file_to_be_sourced>.

export_vars (dict)
A dictionary containing all the variables (and their values) to be exported. The syntax is as follows:

export_vars:
A_VAR_TO_BE_EXPORTED: the_value

The previous example will result in the following export in the script produced by esm_master or
esm_runscripts:

export A_VAR_TO_BE_EXPORTED=the_value

As a dictionary, export_vars is not allowed to have repeated keys. This could be a problem when environments
are required to redefine a variable at different points of the script. To overcome this limitation, repetitions of the
same variable are allowed if the key is followed by an integer contained inside [(int)]:

export_vars:
A_VAR_TO_BE_EXPORTED: the_value
A_VAR_TO_BE_EXPORTED[(1)]: $A_VAR_TO_BE_EXPORTED:another_value

61

ESM Tools r6.13 UserManual

The resulting script will contain the following exports:

export A_VAR_TO_BE_EXPORTED=the_value
export A_VAR_TO_BE_EXPORTED=$A_VAR_TO_BE_EXPORTED:another_value

Note that the index is removed once the exports are transferred into the script.

14.2 Modification of the environment through the model/setup files

As previously mentioned, the default environment for a HPC system is defined inside its machine file (in esm_tools/
machines/<machine_name>.yaml). However, it is possible to modify this environment through the model and/or
coupled setup files (or even inside the runscript) to adjust to the model/setup requirements. For this purpose, the
variables environment_changes, compiletime_environment_changes and runtime_environment_changes
can be used.

environment_changes (dict)
Allows for modifications of the machine module_actions and export_vars, both during compilation and
runtime.

compiletime_environment_changes (dict)
Allows for modifications of the machine module_actions and export_vars, only applied during compilation
time.

compiletime_environment_changes (dict)
Allows for modifications of the machine module_actions and export_vars, only applied during run time.

The syntax for this dictionary is the same as that defined in Environment variables, but using add_ in front of the
environment variables (add_module_actions and add_export_vars). Furthermore, the environment variables can
be nested inside choose_ blocks:

environment_changes:
choose_computer:

ollie:
add_export_vars:

COMPUTER_VAR: 'ollie'
juwels:

add_export_vars:
COMPUTER_VAR: 'mistral'

Note: This changes are model-specific for compilation, meaning that the changes will only occur for the compilation
script of the model containing those changes. For runtime, all the environments of the components will be added
together into the same .run script. Please, refer to Coupled setup environment control for an explanation on how to
control environments for a whole setup.

62 Chapter 14. ESM Environment

ESM Tools r6.13 UserManual

14.3 Coupled setup environment control

There are two ways in which the environments for the coupled setups can be modified: defining
environment_changes for each component or defining a general environment_changes for the whole setup:

14.3.1 Component-by-component

The environment_changes are taken from the standalone component files. It is possible to modify these
environment_changes through the setup file by including environment_changes inside the chapter of that com-
ponent.

Warning: Handling environment_changes in this fashion implies that compilation scripts can potentially end
up containing different environments.

14.3.2 General environment for setups

To define a general environment_changes for all the components of a setup, include the environment_changes
inside the general section of the setup file. This will ignore all the environment_changes defined by the stan-
dalone files. It is still possible to add component-specific environment_changes from the component chapter
inside the setup file.

14.3. Coupled setup environment control 63

ESM Tools r6.13 UserManual

64 Chapter 14. ESM Environment

CHAPTER

FIFTEEN

ESM MOTD

The package esm_motd is an ESM-Tools integrated message-of-the-day system, intended as a way for the ESM-Tools
Development Team to easily announce new releases and bug fixes to the users without the need of emailing.

It checks the versions of the different ESM-Tools packages installed by the user, and reports back to the user (writing to
stdout) about packages that have available updates, and what are the new improvements that they provide (i.e. reports
back that a bug in a certain package has been solved).

This check occurs every time the user uses esm_runscripts.

The messages, their corresponding versions and other related information is stored online in GitHub and accessed by
ESM-Tools also online to produce the report. The user can look at this file if necessary here: <https://github.com/esm-
tools/esm_tools/tree/release/esm_tools/motd/motd.yaml>_.

Warning: The motd.yaml file is to be modified exclusively by the ESM-Tools Core Development Team, so. . .
stay away from it ;-)

65

ESM Tools r6.13 UserManual

66 Chapter 15. ESM MOTD

CHAPTER

SIXTEEN

COOKBOOK

In this chapter you can find multiple recipes for different ESM-Tools functionalities, such running a model, adding
forcing files, editing defaults in namelists, etc.

If you’d like to contribute with your own recipe, or ask for a recipe, please open a documentation issue on our GitHub
repository.

Note: Throughout the cookbook, we will sometimes refer to a nested part of a configuration via dot notation, e.g.
a.b.c. Here, we mean the following in a YAML config file:

a:
b:
c: "foo"

This would indicate that the value of a.b.c is "foo". In Python, you would access this value as a["b"]["c"].

16.1 Change/Add Flags to the sbatch Call

Feature available since version: 4.2

If you are using SLURM batch system together with ESM-Tools (so far the default system), you can modify the sbatch
call flags by modifying the following variables from your runscript, inside the computer section:

Key Description
mail_type,
mail_user

Define these two variables to get updates about your slurm-job through email.

sin-
gle_proc_submit_flag

By default defined as --ntasks-per-node=1

addi-
tional_flags

To add any additional flag that is not predefined in ESM-Tools

67

https://github.com/esm-tools/esm_tools/issues/new?assignees=&labels=documentation&template=doc_request_contribution.md&title=
https://github.com/esm-tools/esm_tools/issues/new?assignees=&labels=documentation&template=doc_request_contribution.md&title=

ESM Tools r6.13 UserManual

16.1.1 Example

Assume you want to run a simulation using the Quality of Service flag (--qos) of SLURM with value 24h. Then, you’ll
need to define the additional_flags inside the computer section of your runscript. This can be done by adding the
following to your runscript:

computer:
additional_flags: "--qos=24h"

16.2 Applying a temporary disturbance to ECHAM to overcome nu-
meric instability (lookup table overflows of various kinds)

Feature available since version: esm_runscripts v4.2.1

From time to time, the ECHAM family of models runs into an error resulting from too high wind speeds. This may look
like this in your log files:

30: ==
30:
30: FATAL ERROR in cuadjtq (1): lookup table overflow
30: FINISH called from PE: 30

To overcome this problem, you can apply a small change to the factor “by which stratospheric horizontal diffussion
is increased from one level to the next level above.” (mo_hdiff.f90), that is the namelist parameter enstdif, in the
dynctl section of the ECHAM namelist. As this is a common problem, there is a way to have the run do this for specific
years of your simulation. Whenever a model year crashes due to numeric instability, you have to apply the method
outlined below.

1. Generate a file to list years you want disturbed.

In your experiment script folder (not the one specific for each run), you can create a file called disturb_years.
dat. An abbreviated file tree would look like:

2. Add years you want disturbed.

The file should contain a list of years the disturbance should be applied to, seperated by new lines. In practice,
you will add a new line with the value of the model year during which the model crashes whenever such a crash
occurs.

16.2.1 Example

In this example, we disturb the years 2005, 2007, and 2008 of an experiment called EXAMPLE running on ollie:

$ cat /work/ollie/pgierz/test_esmtools/EXAMPLE/scripts/disturb_years.dat
2005
2007
2008

You can also set the disturbance strength in your configuration under echam.disturbance. The default is 1.000001.
Here, we apply a 200% disturbance whenever a “disturb_year” is encountered.

echam:
disturbance: 2.0

68 Chapter 16. Cookbook

ESM Tools r6.13 UserManual

General exp dir

scripts (<exp_dir>/scripts)

analysis

bin

<runscript>.yaml

...

run_<DATE>

scripts

... disturb_years.dat

...

Fig. 1: disturb_years.dat location

16.2. Applying a temporary disturbance to ECHAM to overcome numeric instability (lookup table
overflows of various kinds)

69

ESM Tools r6.13 UserManual

16.2.2 See also

• ECHAM6 User Handbook, Table 2.4, dynctl

• Relevant source code

16.3 Changing Namelist Entries from the Runscript

Feature available since version: 4.2

You can modify namelists directly from your user yaml runscript configuration.

1. Identify which namelist you want to modify and ensure that it is in the correct section. For example, you can
only modify ECHAM specific namelists from an ECHAM block.

2. Find the subsection (“chapter”) of the namelist you want to edit.

3. Find the setting (“key”) you want to edit

4. Add a namelist_changes block to your configuration, specify next the namelist filename you want to modify,
then the chapter, then the key, and finally the desired value.

In dot notation, this will look like: <model_name>.namelist_changes.<namelist_name>.<chapter_name>.
<key_name> = <value>

16.3.1 Example

Here are examples for just the relevant YAML change, and for a full runscript using this feature.

Snippet

In this example, we modify the co2vmr of the radctl section of namelist.echam.

echam:
namelist_changes:

namelist.echam:
radctl:

co2vmr: 1200e-6

Full Runscript

In this example, we set up AWI-ESM 2.1 for a 4xCO2 simulation. You can see how multiple namelist changes are
applied in one block.

general:
setup_name: "awiesm"
compute_time: "02:30:00"
initial_date: "2000-01-01"
final_date: "2002-12-31"
base_dir: "/work/ab0246/a270077/For_Christian/experiments/"
nmonth: 0
nyear: 1
account: "ab0246"

echam:
restart_unit: "years"

(continues on next page)

70 Chapter 16. Cookbook

https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/ECHAM/echam6_userguide.pdf
https://github.com/esm-tools/esm_runscripts/blob/103d0f3d614688efb839aa9292d843da49bd3788/esm_runscripts/namelists.py#L182-L217

ESM Tools r6.13 UserManual

(continued from previous page)

nprocar: 0
nprocbr: 0
namelist_changes:

namelist.echam:
radctl:

co2vmr: 1137.e-6
parctl:

nprocar: 0
nprocbr: 0

runctl:
default_output: True

awiesm:
version: "2.1"
postprocessing: true
scenario: "PALEO"
model_dir: "/work/ab0246/a270077/For_Christian/model_codes/awiesm-2.1/"

fesom:
version: "2.0"
res: "CORE2"
pool_dir: "/pool/data/AWICM/FESOM2"
mesh_dir: "/work/ba1066/a270061/mesh_CORE2_finaltopo_mean/"
restart_rate: 1
restart_unit: "y"
restart_first: 1
lresume: 0
namelist_changes:

namelist.config:
paths:

ClimateDataPath: "/work/ba0989/a270077/AWIESM_2_1_LR_concurrent_rad/
→˓nonstandard_input_files/fesom/hydrography/"

jsbach:
input_sources:

jsbach_1850: "/work/ba1066/a270061/mesh_CORE2_finaltopo_mean/tarfilesT63/input/
→˓jsbach/jsbach_T63CORE2_11tiles_5layers_1850.nc"

16.3.2 Practical Usage

It is generally a good idea to run your simulation once in check mode before actually submitting and examining the
resulting namelists:

$ esm_runscripts <your_config.yaml> -e <expid> -c

The namelists are printed in their final form as part of the log during the job submission and can be seen on disk in the
work folder of your first run_XZY folder.

Note that you can have several chapters for one namelist or several namelists included in one namelist_changes
block, but you can only have one namelist_changes block per model or component (see Changing Namelists).

16.3. Changing Namelist Entries from the Runscript 71

ESM Tools r6.13 UserManual

16.3.3 Unusual Namelists

Some times, you have strange namelists of the form:

sn_tracer(1) = 'DET' , 'Detritus ' , 'mmole-N/m3' , .false.
sn_tracer(2) = 'ZOO' , 'Zooplankton concentration ' , 'mmole-N/m3' , .false.
sn_tracer(3) = 'PHY' , 'Phytoplankton concentration' , 'mmole-N/m3' , .false.

To correctly insert this via esm-tools, you can use:

namelist_changes:
namelist_top_cfg:
namtrc:
sn_tracer: "remove_from_namelist"
sn_tracer(1)%clsname: DET
sn_tracer(2)%clsname: ZOO
sn_tracer(3)%clsname: PHY
sn_tracer(1)%cllname: "Detritus"
sn_tracer(2)%cllname: "Zooplankton concentration"
sn_tracer(3)%cllname: "Phytoplankton concentration"
sn_tracer(1:3)%clunit: "mmole-N/m3"

16.3.4 See also

• Default namelists on GitHub

• Changing Namelists

• What Is YAML?

16.4 Heterogeneous Parallelization Run (MPI/OpenMP)

Feature available since version: 5.1

In order to run a simulation with hybrid MPI/OpenMP parallelization include the following in your runscript:

1. Add heterogenous_parallelization: true in the computer section of your runscript. If the computer
section does not exist create one.

2. Add omp_num_threads: <number> to the sections of the components you’d like to have OpenMP paralleliza-
tion.

16.4.1 Example

AWICM3

In AWICM3 we have 3 components: FESOM-2, OpenIFS and RNFMAP. We want to run OpenIFS with 8 OpenMP
threads, RNFMAP with 48, and FESOM-2 with 1. Then, the following lines need to be added to our runscript:

general:
[...]

computer:
heterogeneous_parallelization: true

(continues on next page)

72 Chapter 16. Cookbook

https://github.com/esm-tools/esm_tools/tree/release/namelists

ESM Tools r6.13 UserManual

(continued from previous page)

[...]
fesom:

omp_num_threads: 1
[...]

oifs:
omp_num_threads: 8
[...]

rnfmap:
omp_num_threads: 48
[...]

16.4.2 See also

• Runtime variables

16.5 How to setup runscripts for different kind of experiments

This recipe describes how to setup a runscript for the following different kinds of experiments. Besides the variables
described in ESM-Tools Variables, add the following variables to your runscript, as described below.

• Initial run: An experiment from initial model conditions.

general:
lresume: 0

• Restart: An experiment that restarts from a previous experiment with the same experiment id.

general:
lresume: 1

• Branching off : An experiment that restarts from a previous experiment but with a different experiment id.

general:
lresume: 1
ini_parent_exp_id: <old-experiment-id>
ini_restart_dir: <path-to-restart-dir-of-old-experiment>/restart/

• Branching off and redate: An experiment that restarts from a previous experiment with a different experiment
id and if this experiment should be continued with a diiferent start date.

general:
lresume: 1
ini_parent_exp_id: <old-experiment-id>
ini_restart_dir: <path-to-restart-dir-of-old-experiment>/restart/
first_initial_year: <year>

16.5. How to setup runscripts for different kind of experiments 73

ESM Tools r6.13 UserManual

16.5.1 See also

• ESM-Tools Variables

• What Is YAML?

16.6 Implement a New Model

Feature available since version: 4.2

1. Upload your model into a repository such us gitlab.awi.de, gitlab.dkrz.de or GitHub. Make sure to set up the
right access permissions, so that you comply with the licensing of the software you are uploading.

2. If you are interested in implementing more than one version of the model, we recommend you to commit them
to the master branch in the order they were developed, and that you create a tag per version. For example:

a. Clone the empty master branch you just created and add your model files to it:

$ git clone https://<your_repository>
$ cp -rf <your_model_files_for_given_version> <your_repository_folder>
$ git add .

b. Commit, tag the version and push the changes to your repository:

$ git commit -m "your comment here"
$ git tag -a <version_id> -m "your comment about the version"
$ git push -u origin <your_master_branch>
$ git push origin <version_id>

c. Repeat steps a and b for all the versions that you would like to be present in ESM-Tools.

3. Now that you have your model in a repository you are ready to implement it into esm_tools. First, you will
need to create your own branch of esm_tools, following the steps 1-4 in Contribution to esm_tools Package. The
recommended name for the branch would be feature/<name_of_your_model>.

4. Then you will need to create a folder for your model inside esm_tools/configs/components and create the
model’s yaml file:

$ mkdir <PATH>/esm_tools/configs/components/<model>
$ touch <PATH>/esm_tools/configs/components/<model>/<model>.yaml

5. Use your favourite text editor to open and edit your <model>.yaml in the esm_tools/configs/components/
<model> folder:

$ <your_text_editor> <PATH>/esm_tools/configs/components/<model>/<model>.yaml

6. Complete the following information about your model:

YOUR_MODEL YAML CONFIGURATION FILE
#

model: your_model_name
type: type_of_your_model # atmosphere, ocean, etc.
version: "the_default_version_of_your_model"

74 Chapter 16. Cookbook

ESM Tools r6.13 UserManual

7. Include the names of the different versions in the available_versions section and the compiling information
for the default version:

[...]

available_versions:
- "1.0.0"
- "1.0.1"
- "1.0.2"
git-repository: "https://your_repository.git"
branch: your_model_branch_in_your_repo
install_bins: "path_to_the_binaries_after_comp"
comp_command: "your_shell_commands_for_compiling" # You can use the defaults "$
→˓{defaults.comp_command}"
clean_command: "your_shell_commands_for_cleaning" # You can use the defaults "$
→˓{defaults.clean_command}"

executable: your_model_command

setup_dir: "${model_dir}"
bin_dir: "${setup_dir}/name_of_the_binary"

In the install_bins key you need to indicate the path inside your model folder where the binaries are com-
piled to, so that esm_master can find them once compiled. The available_versions key is needed for
esm_master to list the versions of your model. The comp_command key indicates the command needed to com-
pile your model, and can be set as ${defaults.comp_command} for a default command (mkdir -p build;
cd build; cmake ..; make install -j `nproc --all`), or you can define your own list of compiling
commands separated with ; ("command1; command2").

8. At this point you can choose between including all the version information inside the same <model>.yaml file,
or to distribute this information among different version files:

Single file

In the <model>.yaml, use a choose_ switch (see Switches (choose_)) to modify the default information that
you added in step 7 to meet the requirements for each specific version. For example, each different version has
its own git branch:

choose_version:
"1.0.0":

branch: "1.0.0"
"1.0.1":

branch: "1.0.1"
"1.0.2":

branch: "develop"

Multiple version files

a. Create a yaml file per version or group of versions. The name of these files should be the same as the ones
in the available_versions section, in the main <model>.yaml file or, in the case of a file containing a
group of versions, the shared name among the versions (i.e. fesom-2.0.yaml):

$ touch <PATH>/esm_tools/configs/<model>/<model-version>.yaml

b. Open the version file with your favourite editor and include the version specific changes. For example,
you want that the version 1.0.2 from your model pulls from the develop git branch, instead of from the
default branch. Then you add to the <model>-1.0.2.yaml version file:

16.6. Implement a New Model 75

ESM Tools r6.13 UserManual

branch: "develop"

Another example is the fesom-2.0.yaml. While fesom.yaml needs to contain all
available_versions, the version specific changes are split among fesom.yaml (including infor-
mation about versions 1) and fesom-2.0.yaml (including information about versions 2):

fesom.yaml

[...]

available_versions:
- '2.0-o'
- '2.0-esm-interface'
- '1.4'
- '1.4-recom'
- '1.4-recom-awicm'
- '2.0-esm-interface-yac'
- '2.0-paleodyn'
- '2.0'
- '2.0-r' # OG: temporarily here
choose_version:
'1.4-recom-awicm':
branch: fesom_recom_1.4_master
destination: fesom-1.4

'1.4-recom':
branch: fesom_recom_1.4_master
destination: fesom-1.4

[...]

fesom-2.0.yaml

[...]

choose_version:
'2.0':
branch: 2.0.2
git-repository:
- https://gitlab.dkrz.de/FESOM/fesom2.git
- github.com/FESOM/fesom2.git
install_bins: bin/fesom.x

2.0-esm-interface:
branch: fesom2_using_esm-interface
destination: fesom-2.0
git-repository:
- https://gitlab.dkrz.de/a270089/fesom-2.0_yac.git
install_bins: bin/fesom.x

[...]

Note: These are just examples of model configurations, but the parser used by ESM-Tools to read yaml files
(esm_parser) allows for a lot of flexibility in their configuration; i.e., imagine that the different versions of
your model are in different repositories, instead of in different branches, and their paths to the binaries are also

76 Chapter 16. Cookbook

ESM Tools r6.13 UserManual

different. Then you can include the git-repository and install_bins variables inside the corresponding
version case for the choose_version.

9. You can now check if esm_master can list and install your model correctly:

$ esm_master

This command should return, without errors, a list of available models and versions including yours. Then you
can actually try installing your model in the desired folder:

$ mkdir ~/model_codes
$ cd ~/model_codes
$ esm_master install-your_model-version

10. If everything works correctly you can check that your changes pass flake8:

$ flake8 <PATH>/esm_tools/configs/components/<model>/<model>.yaml

Use this link to learn more about flake8 and how to install it.

11. Commit your changes, push them to the origin remote repository and submit a pull request through GitHub
(see steps 5-7 in Contribution to esm_tools Package).

Note: You can include all the compiling information inside a compile_infos section to avoid conflicts with other
choose_version switches present in your configuration file.

16.6.1 See also

• ESM-Tools Variables

• Switches (choose_)

• What Is YAML?

16.7 Implement a New Coupled Setup

Feature available since version: 4.2

An example of the different files needed for AWICM setup is included at the end of this section (see
recipes/add_model_setup:Example).

1. Make sure the models, couplers and versions you want to use, are already available for esm_master to install them
($ esm_master and check the list). If something is missing you will need to add it following the instructions in
Implement a New Model.

2. Once everything you need is available to esm_master, you will need to create your own branch of esm_tools,
following the steps 1-4 in Contribution to esm_tools Package.

3. Setups need two types of files: 1) coupling files containing information about model versions and coupling
changes, and 2) setup files containing the general information about the setup and the model changes. In this
step we focus on the creation of the coupling files.

a. Create a folder for your couplings in esm_tools/configs/couplings:

16.7. Implement a New Coupled Setup 77

https://flake8.pycqa.org/en/latest/index.html

ESM Tools r6.13 UserManual

$ cd esm_tools/configs/couplings/
$ mkdir <coupling_name1>
$ mkdir <coupling_name2>
...

The naming convention we follow for the coupling files is component1-version+component2-version+.
...

b. Create a yaml file inside the coupling folder with the same name:

$ touch <coupling_name1>/<coupling_name1>.yaml

c. Include the following information in each coupling file:

components:
- "model1-version"
- "model2-version"
- [...]
- "coupler-version"
coupling_changes:
- sed -i '/MODEL1_PARAMETER/s/OFF/ON/g' model1-1.0/file_to_change
- sed -i '/MODEL2_PARAMETER/s/OFF/ON/g' model2-1.0/file_to_change
- [...]

The components section should list the models and couplers used for the given coupling including, their
required version. The coupling_changes subsection should include a list of commands to make the nec-
essary changes in the component’s compilation configuration files (CMakeLists.txt, configure, etc.),
for a correct compilation of the coupled setup.

4. Now, it is the turn for the creation of the setup file. Create a folder for your coupled setup inside esm_tools/
configs/setups folder, and create a yaml file for your setup:

$ mkdir <PATH>/esm_tools/configs/setups/<your_setup>
$ touch <PATH>/esm_tools/configs/setups/<your_setup>/<setup>.yaml

5. Use your favourite text editor to open and edit your <setup>.yaml in the esm_tools/configs/setups/
<your_setup> folder:

$ <your_text_editor> <PATH>/esm_tools/configs/setups/<your_setup>/<setup>.yaml

6. Complete the following information about your setup:

##
→˓#####
######################### NAME_VERSION YAML CONFIGURATION FILE #####################
→˓#####
##
→˓#####

general:
model: your_setup
version: "your_setup_version"

coupled_setup: True

(continues on next page)

78 Chapter 16. Cookbook

ESM Tools r6.13 UserManual

(continued from previous page)

include_models: # List of models, couplers and componentes of the␣
→˓setup.

- component_1 # Do not include the version number
- component_2
- [...]

Note: Models do not have a general section but in the setups the general section is mandatory.

7. Include the names of the different versions in the available_versions section:

general:

[...]

available_versions:
- "1.0.0"
- "1.0.1"

The available_versions key is needed for esm_master to list the versions of your setup.

8. In the <setup>.yaml, use a choose_ switch (see Switches (choose_)) to assign the coupling files (created in
step 3) to their corresponding setup versions:

general:

[...]

choose_version:
"1.0.0":

couplings:
- "model1-1.0+model2-1.0"

"1.0.1":
couplings:

- "model1-1.1+model2-1.1"

[...]

9. You can now check if esm_master can list and install your coupled setup correctly:

$ esm_master

This command should return, without errors, a list of available setups and versions including yours. Then you
can actually try installing your setup in the desire folder:

$ mkdir ~/model_codes
$ cd ~/model_codes
$ esm_master install-your_setup-version

10. If everything works correctly you can check that your changes pass flake8:

$ flake8 <PATH>/esm_tools/configs/setups/<your_setup>/<setup>.yaml
$ flake8 <PATH>/esm_tools/configs/couplings/<coupling_name>/<coupling_name>.yaml

16.7. Implement a New Coupled Setup 79

ESM Tools r6.13 UserManual

Use this link to learn more about flake8 and how to install it.

11. Commit your changes, push them to the origin remote repository and submit a pull request through GitHub
(see steps 5-7 in Contribution to esm_tools Package).

16.7.1 Example

Here you can have a look at relevant snippets of some of the AWICM-1.0 files.

fesom-1.4+echam-6.3.04p1.yaml

One of the coupling files for AWICM-1.0 (esm_tools/configs/couplings/fesom-1.4+echam-6.3.04p1/
fesom-1.4+echam-6.3.04p1.yaml):

components:
- echam-6.3.04p1
- fesom-1.4
- oasis3mct-2.8
coupling_changes:
- sed -i '/FESOM_COUPLED/s/OFF/ON/g' fesom-1.4/CMakeLists.txt
- sed -i '/ECHAM6_COUPLED/s/OFF/ON/g' echam-6.3.04p1/CMakeLists.txt

awicm.yaml

Setup file for AWICM (esm_tools/configs/setups/awicm/awicm.yaml):

###
######################### AWICM 1 YAML CONFIGURATION FILE ###############################
###

general:
model: awicm
#model_dir: ${esm_master_dir}/awicm-${version}

coupled_setup: True

include_models:
- echam
- fesom
- oasis3mct

version: "1.1"
scenario: "PI-CTRL"
resolution: ${echam.resolution}_${fesom.resolution}
postprocessing: false
post_time: "00:05:00"
choose_general.resolution:

T63_CORE2:
compute_time: "02:00:00"

T63_REF87K:
compute_time: "02:00:00"

T63_REF:
compute_time: "02:00:00"

(continues on next page)

80 Chapter 16. Cookbook

https://flake8.pycqa.org/en/latest/index.html

ESM Tools r6.13 UserManual

(continued from previous page)

available_versions:
- '1.0'
- '1.0-recom'
- CMIP6
choose_version:
'1.0':
couplings:
- fesom-1.4+echam-6.3.04p1

'1.0-recom':
couplings:
- fesom-1.4+recom-2.0+echam-6.3.04p1

CMIP6:
couplings:
- fesom-1.4+echam-6.3.04p1

16.7.2 See also

• ESM-Tools Variables

• Switches (choose_)

• What Is YAML?

16.8 Include a New Forcing/Input File

Feature available since version: 4.2

There are several ways of including a new forcing or input file into your experiment depending on the degree of control
you’d like to achieve. An important clarification is that <forcing/input>_sources file dictionary specifies the
sources (paths to the files in the pools or personal folders, that need to be copied or linked into the experiment folder).
On the other hand <forcing/input>_files specifies which of these sources are to be included in the experiment.
This allows us to have many sources already available to the user, and then the user can simply choose which of them to
use by chosing from <forcing/input>_files. <forcing/input>_in_work is used to copy the files into the work
folder (<base_dir>/<exp_id>/run_<DATE>/work) if necessary and change their name. For more technical details
see File Dictionaries.

The next sections illustrate some of the many options to handle forcing and input files.

16.8.1 Source Path Already Defined in a Config File

1. Make sure the source of the file is already specified inside the forcing_sources or input_sources file dic-
tionaries in the configuration file of the setup or model you are running, or on the further_reading files.

2. In your runscript, include the key of the source file you want to include inside the forcing_files or
input_files section.

Note: Note that the key containing the source in the forcing_sources or input_sources can be different than the
key specified in forcing_files or input_files.

16.8. Include a New Forcing/Input File 81

ESM Tools r6.13 UserManual

Example

ECHAM

In ECHAM, the source and input file paths are specified in a separate file (<PATH>/esm_tools/configs/
components/echam/echam.datasets.yaml) that is reached through the further_reading section of the echam.
yaml. This file includes a large number of different sources for input and forcing contained in the pool directories of
the HPC systems Ollie and Mistral. Let’s have a look at the sst forcing file options available in this file:

forcing_sources:
sst
"amipsst":

"${forcing_dir}/amip/${resolution}_amipsst_@YEAR@.nc":
from: 1870
to: 2016

"pisst": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-
→˓2379.ncy"

This means that from our runscript we will be able to select either amipsst or pisst as sst forcing files. If you define
scenario in ECHAM be PI-CTRL the correct file source (pisst) is already selected for you. However, if you would
like to select this file manually you can just simply add the following to your runscript:

forcing_files:
sst: pisst

16.8.2 Modify the Source of a File

To change the path of the source for a given forcing or input file from your runscript:

1. Include the source path under a key inside forcing_sources or input_sources in your runscript:

<forcing/input>_sources:
<key_for_your_file>: <path_to_your_file>

If the source is not a single file, but there is a file per year use the @YEAR@ and from: to: functionality in the
path to copy only the files corresponding to that run’s year:

<forcing/input>_sources:
<key_for_your_source>: <firt_part_of_the_path>@YEAR@<second_part_of_the_

→˓path>
from: <first_year>
to: <last_year>

2. Make sure the key for your path is defined in one of the config files that you are using, inside of either
forcing_files or input_files. If it is not defined anywhere you will have to include it in your runscript:

<forcing/input>_files:
<key_for_your_file>: <key_for_your_source>

82 Chapter 16. Cookbook

ESM Tools r6.13 UserManual

16.8.3 Copy the file in the work folder and/or rename it

To copy the files from the forcing/input folders into the work folder (<base_dir>/<exp_id>/run_<DATE>/work) or
rename them:

1. Make sure your file and its source is defined somewhere (either in the config files or in your runscript) in
<forcing/input>_sources and <forcing/input>_files (see subsections Source Path Already Defined
in a Config File and Modify the Source of a File).

2. In your runscript, add the key to the file you want to copy with value the same as the key, inside <forc-
ing/input>_in_work:

<forcing/input>_in_work:
<key_for_your_file>: <key_for_your_file>

3. If you want to rename the file set the value to the desired name:

<forcing/input>_in_work:
<key_for_your_file>: <key_for_your_file>

Example

ECHAM

In ECHAM the sst forcing file depends in the scenario defined by the user:

esm_tools/config/component/echam/echam.datasets.yaml

forcing_sources:
sst
"amipsst":

"${forcing_dir}/amip/${resolution}_amipsst_@YEAR@.nc":
from: 1870
to: 2016

"pisst": "${forcing_dir}/${resolution}${ocean_resolution}_piControl-LR_sst_1880-
→˓2379.nc"

esm_tools/config/component/echam/echam.yaml

choose_scenario:
"PI-CTRL":

forcing_files:
sst: pisst
[...]

If scenario: "PI-CTRL" then the source selected will be ${forcing_dir}/
${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.nc and the name of the file copied to
the experiment forcing folder will be ${resolution}${ocean_resolution}_piControl-LR_sst_1880-2379.
nc. However, ECHAM needs this file in the same folder as the binary (the work folder) under the name unit.20. To
copy and rename this file into the work folder the following lines are used in the echam.yaml configuration file:

forcing_in_work:
sst: "unit.20"

You can use the same syntax inside your runscript to copy into the work folder any forcing or input file, and rename
it.

16.8. Include a New Forcing/Input File 83

ESM Tools r6.13 UserManual

16.8.4 See also

• What Is YAML?

• File Dictionaries

16.9 Exclude a Forcing/Input File

Feature available since version: 4.2

To exclude one of the predefined forcing or input files from being copied to your experiment folder:

1. Find the key of the file to be excluded inside the config file, <forcing/input>_files file dictionary.

2. In your runscript, use the remove_ functionality to exclude this key from the <forcing/input>_files file
dictionary:

remove_<input/forcing>_files:
- <key_of_the_file1>
- <key_of_the_file2>
- ...

16.9.1 Example

ECHAM

To exclude the sst forcing file from been copied to the experiment folder include the following lines in your runscript:

remove_forcing_files:
- sst

16.9.2 See also

• What Is YAML?

• Remove Elements from a List/Dictionary (remove_)

• File Dictionaries

16.10 Using your own namelist

Feature available since version: 4.2

Warning: This feature is only recommended if the number of changes that need to be applied to the default
namelist is very large, otherwise we recommend to use the feature namelist_changes (see Changing Namelist
Entries from the Runscript). You can check the default namelists here.

In your runscript, you can instruct ESM-Tools to substitute a given default namelist by a namelist of your choice.

1. Search for the config_sources variable inside the configuration file of the model you are trying to run, and
then, identify the “key” containing the path to the default namelist.

84 Chapter 16. Cookbook

https://github.com/esm-tools/esm_tools/tree/release/namelists

ESM Tools r6.13 UserManual

2. In your runscript, indented in the corresponding model section, add an add_config_sources section, contain-
ing a variable whose “key” is the one of step 1, and the value is the path of the new namelist.

3. Bare in mind, that namelists are first loaded by ESM-Tools, and then modified by the default namelist_changes
in the configuration files. If you want to ignore all those changes for the your new namelist you’ll need to add
remove_namelist_changes: [<name_of_your_namelist>].

In dot notation both steps will look like: <model_name>.<add_config_sources>.<key_of_the_namelist>:
<path_of_your_namelist> <model_name>.<remove_namelis_changes>: [<name_of_your_namelist>]

Warning: Use step 3 at your own risk! Many of the model specific information and functional-
ity is transferred to the model through namelist_changes, and therefore, we discourage you from using
remove_namelist_changes unless you have a very deep understanding of the configuration file and the model.
Following Changing Namelist Entries from the Runscript would be a safest solution.

16.10.1 Example

In this example we show how to use an ECHAM namelist.echam and a FESOM namelist.ice that are not the
default ones and omit the namelist_changes present in echam.yaml and fesom.yaml configuration files.

ECHAM

Following step 1, search for the config_sources dictionary inside the echam.yaml:

Configuration Files:
config_sources:

"namelist.echam": "${namelist_dir}/namelist.echam"

In this case the “key” is "namelist.echam" and the “value” is "${namelist_dir}/namelist.echam". Let’s as-
sume your namelist is in the directory /home/ollie/<usr>/my_namelists. Following step 2, you will need to
include the following in your runscript:

echam:
add_config_sources:

"namelist.echam": /home/ollie/<usr>/my_namelists/namelist.echam

If you want to omit the namelist_changes in echam.yaml or any other configuration file that your model/couple
setup is using, you’ll need to add to your runscript remove_namelist_changes: [namelist.echam] (step 3):

echam:
add_config_sources:

"namelist.echam": /home/ollie/<usr>/my_namelists/namelist.echam

remove_namelist_changes: [namelist.echam]

Warning: Many of the model specific information and functionality is transferred to the model through
namelist_changes, and therefore, we discourage you from using this unless you have a very deep understanding of
the echam.yaml file and the ECHAM model. For example, using remove_namelist_changes: [namelist.
echam] will destroy the following lines in the echam.yaml:
choose_lresume:

False:
restart_in_modifications:

16.10. Using your own namelist 85

ESM Tools r6.13 UserManual

"[[streams-->STREAM]]":
- "vdate <--set_global_attr-- ${start_date!syear!smonth!

→˓sday}"
- fdate "<--set_dim--" ${year_before_date}
- ndate "<--set_dim--" ${steps_in_year_before}

True:
pseudo_start_date: $((${start_date} - ${time_step}))
add_namelist_changes:

namelist.echam:
runctl:

dt_start: "remove_from_namelist"

This lines are relevant for correctly performing restarts, so if remove_namelist_changes is used, make sure to
have the approrpiate commands on your runscript to remove dt_start from your namelist in case of a restart.

FESOM

Following step 1, search for the config_sources dictionary inside the fesom.yaml:

config_sources:
config: "${namelist_dir}/namelist.config"
forcing: "${namelist_dir}/namelist.forcing"
ice: "${namelist_dir}/namelist.ice"
oce: "${namelist_dir}/namelist.oce"
diag: "${namelist_dir}/namelist.diag"

In this case the “key” is ice and the “value” is ${namelist_dir}/namelist.ice. Let’s assume your namelist is in
the directory /home/ollie/<usr>/my_namelists. Following step 2, you will need to include the following in your
runscript:

fesom:
add_config_sources:

ice: "/home/ollie/<usr>/my_namelists/namelist.ice"

If you want to omit the namelist_changes in fesom.yaml or any other configuration file that your model/couple
setup is using, you’ll need to add to your runscript remove_namelist_changes: [namelist.ice] (step 3):

fesom:
add_config_sources:

ice: "/home/ollie/<usr>/my_namelists/namelist.ice"

remove_namelist_changes: [namelist.ice]

Warning: Many of the model specific information and functionality is transferred to the model through
namelist_changes, and therefore, we discourage you from using this unless you have a very deep understanding
of the fesom.yaml file and the FESOM model.

86 Chapter 16. Cookbook

ESM Tools r6.13 UserManual

16.10.2 See also

• Default namelists on GitHub

• Append to an Existing List (add_)

• Changing Namelists

• What Is YAML?

16.11 How to branch-off FESOM from old spinup restart files

When you branch-off from very old FESOM ocean restart files, you may encounter the following runtime error:

read ocean restart file
Error:
NetCDF: Invalid dimension ID or name

This is because the naming of the NetCDF time dimension variable in the restart file has changed from T to time during
the development of FESOM and the different FESOM versions. Therefore, recent versions of FESOM expect the name
of the time dimension to be time.

In order to branch-off experiments from spinup restart files that use the old name for the time dimension, you need to
rename this dimension before starting the branch-off experiment.

Warning: The following work around will change the restart file permanently. Make sure you do not apply this to
the original file.

To rename a dimension variable of a NetCDF file, you can use ncrename:

ncrename -d T,time <copy_of_restart_spinup_file>.nc

where T is the old dimension and time is the new dimension.

16.11.1 See also

• cookbook:How to run a branch-off experiment

16.11. How to branch-off FESOM from old spinup restart files 87

https://github.com/esm-tools/esm_tools/tree/release/namelists

ESM Tools r6.13 UserManual

88 Chapter 16. Cookbook

CHAPTER

SEVENTEEN

FREQUENTLY ASKED QUESTIONS

17.1 Installation

1. Q: My organization is not in the pull-down list I get when trying the Federated Login to gitlab.awi.de.

A: Then maybe your institution just didn’t join the DFN-AAI. You can check that at https://tools.aai.dfn.de/
entities/.

2. Q: I am trying to use the Federated Login, and that seems to work fine. When I should be redirected to the gitlab
server though, I get the error that my uid is missing.

A: Even though your organization joined the DFN-AAI, gitlab.awi.de needs your organization to deliver informa-
tion about your institutional e-mail address as part of the identity provided. Please contact the person responsible
for shibboleth in your organization.

17.2 ESM Runscripts

1. Q: I get the error: load_all_functions: not found [No such file or directory] when calling my
runscript like this:

$./my_run_script.sh -e some_expid

A: You are trying to call your runscript the old-fashioned way that worked with the shell-script version, until
revision 3. With the new python version, you get a new executable esm_runscripts that should be in your
PATH already. Call your runscript like this:

$ esm_runscripts my_run_script.sh -e some_expid

All the command line options still apply. By the way, “load_all_function” doesn’t hurt to have in the runscript,
but can savely be removed.

2. Q: What should I put into the variable FUNCTION_PATH in my runscript, I can’t find the folder functions/all
it should point to.

A: You can safely forget about FUNCTION_PATH, which was only needed in the shell script version until revision
3. Either ignore it, or better remove it from the runscript.

3. Q: When I try to branch-off from a spinup experiment using FESOM, I get the following runtime error:

read ocean restart file
Error:
NetCDF: Invalid dimension ID or name

89

https://tools.aai.dfn.de/entities/
https://tools.aai.dfn.de/entities/

ESM Tools r6.13 UserManual

A: See How to branch-off FESOM from old spinup restart files.

17.3 ESM Master

1. Q: How can I define different environments for different models / different versions of the same model?

A: You can add a choose-block in the models yaml-file (esm_tools/configs/model_name.yaml), e.g.:

choose_version:
40r1:

environment_changes:
add_export_vars:

- 'MY_VAR="something"'
add_module_actions:

- load my_own_module

43r3:
environment_changes:

add_export_vars:
- 'MY_VAR="something_else"'

2. Q: How can I add a new model, setup, and coupling strategy to the esm_master tool?

A: Add your configuration in the file configs/esm_master/setups2models.yaml

17.4 Frequent Errors

1. Q: When I try to install ESM-Tools or use esm_versions I get the following error:

RuntimeError: Click will abort further execution because Python 3 was configured to␣
→˓use ASCII as encoding for the environment. Consult https://click.palletsprojects.
→˓com/en/7.x/python3/ for mitigation steps.

or something on the following lines:

ERROR: Command errored out with exit status 1:
command: /sw/rhel6-x64/conda/anaconda3-bleeding_edge/bin/python -c 'import sys,␣
→˓setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-0y687gmq/esm-master/setup.py'
→˓"'"'; _file__='"'"'/tmp/pip-install-0y687gmq/esm-master/setup.py'"'"';
→˓f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"
→˓', '"'"'\n'"'"');f.close();exec(compile(code, _file__, '"'"'exec'"'"'))' egg_info --
→˓egg-base /tmp/pip-install-0y687gmq/esm-master/pip-egg-info
cwd: /tmp/pip-install-0y687gmq/esm-master/
Complete output (7 lines):
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/tmp/pip-install-0y687gmq/esm-master/setup.py", line 8, in <module>
readme = readme_file.read()

File "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/encodings/ascii.py",␣
→˓line 26, in decode

return codecs.ascii_decode(input, self.errors)[0]
(continues on next page)

90 Chapter 17. Frequently Asked Questions

ESM Tools r6.13 UserManual

(continued from previous page)

UnicodeDecodeError: 'ascii' codec can't decode byte 0xf0 in position 1468: ordinal not␣
→˓in range(128)

--
ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs␣
→˓for full command output.

A: Some systems have ``C.UTF-8`` as locale default (i.e. ``$LC_ALL``, ``$LANG``).␣
→˓This issue is solved by setting up the locales respectively to ``en_US.UTF-8`` and␣
→˓``en_US.UTF-8``, either manually or adding them to the local bash configuration file␣
→˓(i.e. ``~/.bash_profile``)::

$ export LC_ALL=en_US.UTF-8
$ export LANG=en_US.UTF-8

2. Q: How can I add a new model, setup, and coupling strategy to the esm_master tool?

A: Add your configuration in the file configs/esm_master/setups2models.yaml (see contribut-
ing:Implementing a New Model and Implement a New Coupled Setup)

17.4. Frequent Errors 91

ESM Tools r6.13 UserManual

92 Chapter 17. Frequently Asked Questions

CHAPTER

EIGHTEEN

PYTHON PACKAGES

The ESM-Tools are divided into a number of python packages / git repositories, both to ensure stability of the code as
well as reusability:

18.1 esm_tools.git

The only repository to clone by hand by the user, esm_tools.git contains the subfolders

configs: A collection of yaml configuration files, containing all the information needed by the python
packages to work properly. This includes machine specific files (e.g. machines/mistral.yaml) , model
specific files (e.g fesom/fesom-2.0.yaml), configurations for coupled setups (e.g. foci/foci.yaml),
but also files with the information on how a certain software works (batch_systems/slurm.yaml), and
finally, how the esm_tools themselves are supposed to work (e.g. esm_master/esm_master.yaml).

18.2 esm_master.git

This repository contains the python files that give the esm_master executable in the subfolder esm_master.

18.3 esm_runscripts.git

The python package of the esm_runscripts executable. The main routines can be found in esm_runscripts/
esm_sim_objects.py.

18.4 esm_parser.git

In order to provide the additional functionality to the yaml+ configuration files (like choose blocks, simple math op-
erations, variable expansions etc.). esm_parser is an extension of the pyyaml package, it needs the esm_calendar
package to run, but can otherwise easily be used to add yaml+ configurations to any python software.

93

ESM Tools r6.13 UserManual

18.5 esm_calendar.git

94 Chapter 18. Python Packages

CHAPTER

NINETEEN

ESM TOOLS CODE DOCUMENTATION

19.1 esm_archiving package

Top-level package for ESM Archiving.

esm_archiving.archive_mistral(tfile, rtfile=None)
Puts the tfile to the tape archive using tape_command

Parameters
• tfile (str) – The full path of the file to put to tape

• rtfile (str) – The filename on the remote tape server. Defaults to None, in which case a
replacement is performed to keep as much of the filename the same as possible. Example:
/work/ab0246/a270077/experiment.tgz –> /hpss/arch/ab0246/a270077/experiment.tgz

Returns
Return type

None

esm_archiving.check_tar_lists(tar_lists)

esm_archiving.delete_original_data(tfile, force=False)
Erases data which is found in the tar file.

Parameters
• tfile (str) – Path to the tarfille whose data should be erased.

• force (bool) – If False, asks the user if they really want to delete their files. Otherwise just
does this silently. Default is False

Returns
Return type

None

esm_archiving.determine_datestamp_location(files)
Given a list of files; figures where the datestamp is by checking if it varies.

Parameters
files (list) – A list (longer than 1!) of files to check

Returns
A slice object giving the location of the datestamp

Return type
slice

95

ESM Tools r6.13 UserManual

Raises
DatestampLocationError : – Raised if there is more than one slice found where the numbers
vary over different files -or- if the length of the file list is not longer than 1.

esm_archiving.determine_potential_datestamp_locations(filepattern)
For a filepattern, gives back index of potential date locations

Parameters
filepattern (str) – The filepattern to check.

Returns
A list of slice object which you can use to cut out dates from the filepattern

Return type
list

esm_archiving.find_indices_of(char, in_string)
Finds indicies of a specific character in a string

Parameters
• char (str) – The character to look for

• in_string (str) – The string to look in

Yields
int – Each round of the generator gives you the next index for the desired character.

esm_archiving.get_files_for_date_range(filepattern, start_date, stop_date, frequency,
date_format='%Y%m%d')

Creates a list of files for specified start/stop dates

Parameters
• filepattern (str) – A filepattern to replace dates in

• start_date (str) – The starting date, in a pandas-friendly date format

• stop_date (str) – Ending date, pandas friendly. Note that for end dates, you need to add
one month to assure that you get the last step in your list!

• frequency (str) – Frequency of dates, pandas friendly

• date_format (str) – How dates should be formatted, defaults to %Y%m%d

Returns
A list of strings for the filepattern with correct date stamps.

Return type
list

Example

>>> filepattern = "LGM_24hourly_PMIP4_echam6_BOT_mm_>>>DATE<<<.nc"
>>> LGM_files = get_files_for_date_range(filepattern, "1890-07", "1891-11", "1M",␣
→˓date_format="%Y%m")
>>> LGM_files == [
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189007.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189008.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189009.nc",

(continues on next page)

96 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

(continued from previous page)

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189010.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189011.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189012.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189101.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189102.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189103.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189104.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189105.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189106.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189107.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189108.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189109.nc",

... "LGM_24hourly_PMIP4_echam6_BOT_mm_189110.nc",

...]
True

esm_archiving.get_list_from_filepattern(filepattern)

esm_archiving.group_files(top, filetype)
Generates quasi-regexes for a specific filetype, replacing all numbers with #.

Parameters
• top (str) – Where to start looking (this should normally be top of the experiment)

• filetype (str) – Which files to go through (e.g. outdata, restart, etc. . .)

Returns
A dictonary containing keys for each folder found in filetype, and values as lists of files with
strings where numbers are replaced by #.

Return type
dict

esm_archiving.group_indexes(index_list)
Splits indexes into tuples of monotonically ascending values.

Parameters
list – The list to split up

Returns
A list of tuples, so that you can get only one group of ascending tuples.

Return type
list

Example

>>> indexes = [0, 1, 2, 3, 12, 13, 15, 16]
>>> group_indexes(indexes)
[(0, 1, 2, 3), (12, 13), (15, 16)]

esm_archiving.log_tarfile_contents(tfile)
Generates a log of the tarball contents

19.1. esm_archiving package 97

ESM Tools r6.13 UserManual

Parameters
tfile (str) – The path for the tar file to generate a log for

Returns
Return type

None

Warning: Note that for this function to work, you need to have write permission in the directory where the
tarball is located. If not, this will probably raise an OSError. I can imagine giving the location of the log path
as an argument; but would like to see if that is actually needed before implementing it. . .

esm_archiving.pack_tarfile(flist, wdir, outname)
Creates a compressed tarball (outname) with all files found in flist.

Parameters
• flist (list) – A list of files to include in this tarball

• wdir (str) – The directory to “change” to when packing up the tar file. This will (essentially)
be used in the tar command as the -C option by stripping off the beginning of the flist

• outname (str) – The output file name

Returns
The output file name

Return type
str

esm_archiving.purify_expid_in(model_files, expid, restore=False)
Puts or restores >>>EXPID<<< marker in filepatterns

Parameters
• model_files (dict) – The model files for archiving

• expid (str) – The experiment ID to purify or restore

• restore (bool) – Set experiment ID back from the temporary marker

Returns
Dictionary containing keys for each model, values for file patterns

Return type
dict

esm_archiving.sort_files_to_tarlists(model_files, start_date, end_date, config)

esm_archiving.split_list_due_to_size_limit(in_list, slimit)

esm_archiving.stamp_filepattern(filepattern, force_return=False)
Transforms # in filepatterns to >>>DATE<<< and replaces other numbers back to original

Parameters
• filepattern (str) – Filepattern to get date stamps for

• force_return (bool) – Returns the list of filepatterns even if it is longer than 1.

Returns
New filepattern, with >>>DATE<<<

98 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

Return type
str

esm_archiving.stamp_files(model_files)
Given a sttandard file dictioanry (keys: model names, values: filepattern); figures out where the date probably
is, and replaces the # sequence with a >>>DATE<<< stamp.

Parameters
model_files (dict) – Dictionary of keys (model names) where values are lists of files for each
model.

Returns
As the input, but replaces the filepatterns with the >>>DATE<<< stamp.

Return type
dict

esm_archiving.sum_tar_lists(tar_lists)
Sums up the amount of space in the tar lists dictionary

Given tar_lists, which is generally a dicitonary consisting of keys (model names) and values (files to be
tarred), figures out how much space the raw, uncompressed files would use. Generally the compressed tarball
will take up less space.

Parameters
tar_lists (dict) – Dictionary of file lists to be summed up. Reports every sum as a value for
the key of that particular list.

Returns
Keys are the same as in the input, values are the sums (in bytes) of all files present within the list.

Return type
dict

esm_archiving.sum_tar_lists_human_readable(tar_lists)
As sum_tar_lists but gives back strings with human-readable sizes.

19.1.1 Subpackages

esm_archiving.external package

Submodules

esm_archiving.external.pypftp module

class esm_archiving.external.pypftp.Pftp(username=None, password=None)
Bases: object

HOST = 'tape.dkrz.de'

PORT = 4021

close()

cwd(path)
change working directory

19.1. esm_archiving package 99

ESM Tools r6.13 UserManual

directories(path=None)
gather directories at the given path

static download(source, destination)
uses pftp binary for transfering the file

exists(path)
check if a path exists

files(path=None)
gather files at the given path

is_connected()

check if the connection is still active

isdir(pathname)
Returns true if pathname refers to an existing directory

isfile(pathname)
Returns true if pathname refers to an existing file

islink(pathname)

listdir(path=None)
list directory contents

listing(path=None)
list directory contents

listing2(path=None)
directory listing in long form. similar to “ls -l”

makedirs(path)
Recursively create dirs as required walking up to an existing parent dir

mkdir(path)

mlsd(path)

pwd()

present working directory

quit()

reconnect()

reconnects to the ftp server

remove(filename)

removedirs(path)

rename(from_name, to_name)

rmdir(path)
remove directory

size(pathname)
Returns size of path in bytes

100 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

stat(pathname)
Returns stat of the path

static upload(source, destination)
uses pftp binary for transfering the file

walk(path=None)
recursively walk the directory tree from the given path. Similar to os.walk

walk_for_directories(path=None)
recursively gather directories

walk_for_files(path=None)
recursively gather files

esm_archiving.external.pypftp.download(source, destination)

esm_archiving.external.pypftp.upload(source, destination)

19.1.2 Submodules

19.1.3 esm_archiving.cli module

After installation, you have a new command in your path:

esm_archive

Passing in the argument --help will show available subcommands:

Usage: esm_archive [OPTIONS] COMMAND [ARGS]...

Console script for esm_archiving.

Options:
--version Show the version and exit.
--write_local_config Write a local configuration YAML file in the current

working directory
--write_config Write a global configuration YAML file in

~/.config/esm_archiving/
--help Show this message and exit.

Commands:
create
upload

To use the tool, you can first create a tar archive and then use upload to put it onto the tape server.

19.1. esm_archiving package 101

ESM Tools r6.13 UserManual

Creating tarballs

Use esm_archive create to generate tar files from an experiment:

esm_archive create /path/to/top/of/experiment start_date end_date

The arguments start_date and end_date should take the form YYYY-MM-DD. A complete example would be:

esm_archive create /work/ab0246/a270077/from_ba0989/AWICM/LGM_6hours 1850-01-01 1851-01-
→˓01

The archiving tool will automatically pack up all files it finds matching these dates in the outdata and restart
directories and generate logs in the top of the experiment folder. Note that the final date (1851-01-1 in this example) is
not included. During packing, you get a progress bar indicating when the tarball is finished.

Please be aware that are size limits in place on DKRZ’s tape server. Any tar files larger than 500 Gb will be trucated.
For more information, see: https://www.dkrz.de/up/systems/hpss/hpss

Uploading tarballs

A second command esm_archive upload allows you to put tarballs onto to tape server at DKRZ:

esm_archive upload /path/to/top/of/experiment start_date end_date

The signature is the same as for the create subcommand. Note that for this to work; you need to have a properly
configured .netrc file in your home directory:

$ cat ~/.netrc
machine tape.dkrz.de login a270077 password OMITTED

This file needs to be readable/writable only for you, e.g. chmod 600. The archiving program will then be
able to automatically log into the tape server and upload the tarballs. Again, more information about logging
onto the tape server without password authentication can be found here: https://www.dkrz.de/up/help/faq/hpss/
how-can-i-use-the-hpss-tape-archive-without-typing-my-password-every-time-e-g-in-scripts-or-jobs

19.1.4 esm_archiving.config module

When run from either the command line or in library mode (note not as an ESM Plugin), esm_archiving can be
configured to how it looks for specific files. The configuration file is called esm_archiving_config, should be
written in YAML, and have the following format:

echam: # The model name
archive: # archive seperator **required**

Frequency specification (how often
a datestamp is generated to look for)
frequency: "1M"
Date format specification
date_format: "%Y%m"

By default, esm_archive looks in the following locations:

1. Current working directory

2. Any files in the XDG Standard:
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

102 Chapter 19. ESM Tools Code Documentation

https://www.dkrz.de/up/systems/hpss/hpss
https://www.dkrz.de/up/help/faq/hpss/how-can-i-use-the-hpss-tape-archive-without-typing-my-password-every-time-e-g-in-scripts-or-jobs
https://www.dkrz.de/up/help/faq/hpss/how-can-i-use-the-hpss-tape-archive-without-typing-my-password-every-time-e-g-in-scripts-or-jobs
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

ESM Tools r6.13 UserManual

If nothing is found, the program reverts to the hard-coded defaults, found in esm_archiving/esm_archiving/
config.py

Note: In future, it might be changed that the program will look for an experiment specific configuration based upon
the path it is given during the create or upload step.

Generating a configuration

You can use the command line switches --write_local_config and --write_config to generate configuration
files either in the current working directory, or in the global directory for your user account defined by the XDG
standard (typically ~/.config/esm_archiving):

$ esm_archive --write_local_config
Writing local (experiment) configuration...

$ esm_archive --write_config
Writing global (user) configuration...

esm_archiving.config.load_config()

Loads the configuration from one of the default configuration directories. If none can be found, returns the
hard-coded default configuration.

Returns
A representation of the configuration used for archiving.

Return type
dict

esm_archiving.config.write_config_yaml(path=None)

19.1.5 esm_archiving.esm_archiving module

This is the esm_archiving module.

exception esm_archiving.esm_archiving.DatestampLocationError

Bases: Exception

esm_archiving.esm_archiving.archive_mistral(tfile, rtfile=None)
Puts the tfile to the tape archive using tape_command

Parameters
• tfile (str) – The full path of the file to put to tape

• rtfile (str) – The filename on the remote tape server. Defaults to None, in which case a
replacement is performed to keep as much of the filename the same as possible. Example:
/work/ab0246/a270077/experiment.tgz –> /hpss/arch/ab0246/a270077/experiment.tgz

Returns
Return type

None

esm_archiving.esm_archiving.check_tar_lists(tar_lists)

19.1. esm_archiving package 103

ESM Tools r6.13 UserManual

esm_archiving.esm_archiving.delete_original_data(tfile, force=False)
Erases data which is found in the tar file.

Parameters
• tfile (str) – Path to the tarfille whose data should be erased.

• force (bool) – If False, asks the user if they really want to delete their files. Otherwise just
does this silently. Default is False

Returns
Return type

None

esm_archiving.esm_archiving.determine_datestamp_location(files)
Given a list of files; figures where the datestamp is by checking if it varies.

Parameters
files (list) – A list (longer than 1!) of files to check

Returns
A slice object giving the location of the datestamp

Return type
slice

Raises
DatestampLocationError : – Raised if there is more than one slice found where the numbers
vary over different files -or- if the length of the file list is not longer than 1.

esm_archiving.esm_archiving.determine_potential_datestamp_locations(filepattern)
For a filepattern, gives back index of potential date locations

Parameters
filepattern (str) – The filepattern to check.

Returns
A list of slice object which you can use to cut out dates from the filepattern

Return type
list

esm_archiving.esm_archiving.find_indices_of(char, in_string)
Finds indicies of a specific character in a string

Parameters
• char (str) – The character to look for

• in_string (str) – The string to look in

Yields
int – Each round of the generator gives you the next index for the desired character.

esm_archiving.esm_archiving.get_files_for_date_range(filepattern, start_date, stop_date, frequency,
date_format='%Y%m%d')

Creates a list of files for specified start/stop dates

Parameters
• filepattern (str) – A filepattern to replace dates in

• start_date (str) – The starting date, in a pandas-friendly date format

104 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

• stop_date (str) – Ending date, pandas friendly. Note that for end dates, you need to add
one month to assure that you get the last step in your list!

• frequency (str) – Frequency of dates, pandas friendly

• date_format (str) – How dates should be formatted, defaults to %Y%m%d

Returns
A list of strings for the filepattern with correct date stamps.

Return type
list

Example

>>> filepattern = "LGM_24hourly_PMIP4_echam6_BOT_mm_>>>DATE<<<.nc"
>>> LGM_files = get_files_for_date_range(filepattern, "1890-07", "1891-11", "1M",␣
→˓date_format="%Y%m")
>>> LGM_files == [
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189007.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189008.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189009.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189010.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189011.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189012.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189101.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189102.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189103.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189104.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189105.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189106.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189107.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189108.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189109.nc",
... "LGM_24hourly_PMIP4_echam6_BOT_mm_189110.nc",
...]
True

esm_archiving.esm_archiving.get_list_from_filepattern(filepattern)

esm_archiving.esm_archiving.group_files(top, filetype)
Generates quasi-regexes for a specific filetype, replacing all numbers with #.

Parameters
• top (str) – Where to start looking (this should normally be top of the experiment)

• filetype (str) – Which files to go through (e.g. outdata, restart, etc. . .)

Returns
A dictonary containing keys for each folder found in filetype, and values as lists of files with
strings where numbers are replaced by #.

Return type
dict

esm_archiving.esm_archiving.group_indexes(index_list)
Splits indexes into tuples of monotonically ascending values.

19.1. esm_archiving package 105

ESM Tools r6.13 UserManual

Parameters
list – The list to split up

Returns
A list of tuples, so that you can get only one group of ascending tuples.

Return type
list

Example

>>> indexes = [0, 1, 2, 3, 12, 13, 15, 16]
>>> group_indexes(indexes)
[(0, 1, 2, 3), (12, 13), (15, 16)]

esm_archiving.esm_archiving.log_tarfile_contents(tfile)
Generates a log of the tarball contents

Parameters
tfile (str) – The path for the tar file to generate a log for

Returns
Return type

None

Warning: Note that for this function to work, you need to have write permission in the directory where the
tarball is located. If not, this will probably raise an OSError. I can imagine giving the location of the log path
as an argument; but would like to see if that is actually needed before implementing it. . .

esm_archiving.esm_archiving.pack_tarfile(flist, wdir, outname)
Creates a compressed tarball (outname) with all files found in flist.

Parameters
• flist (list) – A list of files to include in this tarball

• wdir (str) – The directory to “change” to when packing up the tar file. This will (essentially)
be used in the tar command as the -C option by stripping off the beginning of the flist

• outname (str) – The output file name

Returns
The output file name

Return type
str

esm_archiving.esm_archiving.purify_expid_in(model_files, expid, restore=False)
Puts or restores >>>EXPID<<< marker in filepatterns

Parameters
• model_files (dict) – The model files for archiving

• expid (str) – The experiment ID to purify or restore

• restore (bool) – Set experiment ID back from the temporary marker

106 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

Returns
Dictionary containing keys for each model, values for file patterns

Return type
dict

esm_archiving.esm_archiving.query_yes_no(question, default='yes')
Ask a yes/no question via input() and return their answer.

“question” is a string that is presented to the user. “default” is the presumed answer if the user just hits <Enter>.

It must be “yes” (the default), “no” or None (meaning an answer is required of the user).

The “answer” return value is True for “yes” or False for “no”.

Note: Shamelessly stolen from StackOverflow It’s not hard to implement, but Paul is lazy. . .

Parameters
• question (str) – The question you’d like to ask the user

• default (str) – The presumed answer for question. Defaults to “yes”.

Returns
True if the user said yes, False if the use said no.

Return type
bool

esm_archiving.esm_archiving.run_command(command)
Runs command and directly prints output to screen.

Parameters
command (str) – The command to run, with pipes, redirects, whatever

Returns
rc – The return code of the subprocess.

Return type
int

esm_archiving.esm_archiving.sort_files_to_tarlists(model_files, start_date, end_date, config)

esm_archiving.esm_archiving.split_list_due_to_size_limit(in_list, slimit)

esm_archiving.esm_archiving.stamp_filepattern(filepattern, force_return=False)
Transforms # in filepatterns to >>>DATE<<< and replaces other numbers back to original

Parameters
• filepattern (str) – Filepattern to get date stamps for

• force_return (bool) – Returns the list of filepatterns even if it is longer than 1.

Returns
New filepattern, with >>>DATE<<<

Return type
str

esm_archiving.esm_archiving.stamp_files(model_files)
Given a sttandard file dictioanry (keys: model names, values: filepattern); figures out where the date probably
is, and replaces the # sequence with a >>>DATE<<< stamp.

19.1. esm_archiving package 107

ESM Tools r6.13 UserManual

Parameters
model_files (dict) – Dictionary of keys (model names) where values are lists of files for each
model.

Returns
As the input, but replaces the filepatterns with the >>>DATE<<< stamp.

Return type
dict

esm_archiving.esm_archiving.sum_tar_lists(tar_lists)
Sums up the amount of space in the tar lists dictionary

Given tar_lists, which is generally a dicitonary consisting of keys (model names) and values (files to be
tarred), figures out how much space the raw, uncompressed files would use. Generally the compressed tarball
will take up less space.

Parameters
tar_lists (dict) – Dictionary of file lists to be summed up. Reports every sum as a value for
the key of that particular list.

Returns
Keys are the same as in the input, values are the sums (in bytes) of all files present within the list.

Return type
dict

esm_archiving.esm_archiving.sum_tar_lists_human_readable(tar_lists)
As sum_tar_lists but gives back strings with human-readable sizes.

19.2 esm_calendar package

Top-level package for ESM Calendar.

19.2.1 Submodules

19.2.2 esm_calendar.esm_calendar module

Module Docstring.,..?

class esm_calendar.esm_calendar.Calendar(calendar_type=1)
Bases: object

Class to contain various types of calendars.

Parameters
calendar_type (int) – The type of calendar to use.

Supported calendar types: 0

no leap years

1
proleptic greogrian calendar (default)

n
equal months of n days

108 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

timeunits

A list of accepted time units.

Type
list of str

monthnames

A list of valid month names, using 3 letter English abbreviation.

Type
list of str

isleapyear(year)
Returns a boolean testing if the given year is a leapyear

day_in_year(year)
Returns the total number of days in a given year

day_in_month(year, month)
Returns the total number of days in a given month for a given year (considering leapyears)

day_in_month(year, month)
Finds the number of days in a given month

Parameters
• year (int) – The year to check

• month (int or str) – The month number or short name.

Returns
The number of days in this month, considering leapyears if needed.

Return type
int

Raises
TypeError – Raised when you give an incorrect type for month

day_in_year(year)
Finds total number of days in a year, considering leapyears if the calendar type allows for them.

Parameters
year (int) – The year to check

Returns
The total number of days for this specific calendar type

Return type
int

isleapyear(year)
Checks if a year is a leapyear

Parameters
year (int) – The year to check

Returns
True if the given year is a leapyear

Return type
bool

19.2. esm_calendar package 109

ESM Tools r6.13 UserManual

monthnames = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
'Nov', 'Dec']

timeunits = ['years', 'months', 'days', 'hours', 'minutes', 'seconds']

class esm_calendar.esm_calendar.Date(indate, calendar=esm_calendar(calendar_type=1))
Bases: object

A class to contain dates, also compatiable with paleo (negative dates)

Parameters
• indate (str) – The date to use.

See pyesm.core.time_control.esm_calendar.Dateformat for available formatters.

• calendar (Calendar`, optional) – The type of calendar to use. Defaults to a greogrian
proleptic calendar if nothing is specified.

year

The year

Type
int

month

The month

Type
int

day

The day

Type
int

hour

The hour

Type
int

minute

The minute

Type
int

second

The second

Type
int

_calendar

The type of calendar to use

Type
Calendar`

110 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

add(to_add)
Adds another date to this one.

Parameters
to_add (Date`) – The other date to add to this one.

Returns
new_date – A new date object with the added dates

Return type
Date`

day_of_year()

Gets the day of the year, counting from Jan. 1

Returns
The day of the current year.

Return type
int

format(form='SELF', givenph=None, givenpm=None, givenps=None)
Needs a docstring! The following forms are accepted: + SELF: uses the format which was given when
constructing the date + 0: A Date formated as YYYY

In [5]: test.format(form=1) Out[5]: ‘1850-01-01_00:00:00’

In [6]: test.format(form=2) Out[6]: ‘1850-01-01T00:00:00’

In [7]: test.format(form=3) Out[7]: ‘1850-01-01 00:00:00’

In [8]: test.format(form=4) Out[8]: ‘1850 01 01 00 00 00’

In [9]: test.format(form=5) Out[9]: ‘01 Jan 1850 00:00:00’

In [10]: test.format(form=6) Out[10]: ‘18500101_00:00:00’

In [11]: test.format(form=7) Out[11]: ‘1850-01-01_000000’

In [12]: test.format(form=8) Out[12]: ‘18500101000000’

In [13]: test.format(form=9) Out[13]: ‘18500101_000000’

In [14]: test.format(form=10) Out[14]: ‘01/01/1850 00:00:00’

classmethod from_list(_list)
Creates a new Date from a list

Parameters
_list (list of ints) – A list of [year, month, day, hour, minute, second]

Returns
date – A new date of year month day, hour minute, second

Return type
Date`

classmethod fromlist(_list)
Creates a new Date from a list

Parameters
_list (list of ints) – A list of [year, month, day, hour, minute, second]

Returns
date – A new date of year month day, hour minute, second

19.2. esm_calendar package 111

ESM Tools r6.13 UserManual

Return type
Date`

makesense(ndate)
Puts overflowed time back into the correct unit.

When manipulating the date, it might be that you have “70 seconds”, or something similar. Here, we put
the overflowed time into the appropriate unit.

output(form='SELF')

property sday

property sdoy

property shour

property sminute

property smonth

property ssecond

sub_date(other)

sub_tuple(to_sub)
Adds another date to from one.

Parameters
to_sub (Date`) – The other date to sub from this one.

Returns
new_date – A new date object with the subtracted dates

Return type
Date`

property syear

time_between(date, outformat='seconds')
Computes the time between two dates

Parameters
date (date`) – The date to compare against.

Returns
Return type

??

class esm_calendar.esm_calendar.Dateformat(form=1, printhours=True, printminutes=True,
printseconds=True)

Bases: object

datesep = ['', '-', '-', '-', ' ', ' ', '', '-', '', '', '/']

dtsep = ['_', '_', 'T', ' ', ' ', ' ', '_', '_', '', '_', ' ']

timesep = ['', ':', ':', ':', ' ', ':', ':', '', '', '', ':']

esm_calendar.esm_calendar.date_range(start_date, stop_date, frequency)

112 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

esm_calendar.esm_calendar.find_remaining_hours(seconds)
Finds the remaining full minutes of a given number of seconds

Parameters
seconds (int) – The number of seconds to allocate

Returns
The leftover seconds once new minutes have been filled.

Return type
int

esm_calendar.esm_calendar.find_remaining_minutes(seconds)
Finds the remaining full minutes of a given number of seconds

Parameters
seconds (int) – The number of seconds to allocate

Returns
The leftover seconds once new minutes have been filled.

Return type
int

19.3 esm_cleanup package

Cleanup tool for ESM-Tools simulations

19.3.1 Submodules

19.3.2 esm_cleanup.cli module

esm_cleanup.cli.evaluate_arguments()

The arg parser for interactive use

esm_cleanup.cli.main()

esm_cleanup.cli.main_loop(folder)

19.3.3 esm_cleanup.esm_cleanup module

esm_cleanup.esm_cleanup.add_size_information(toplevel, item)

esm_cleanup.esm_cleanup.ask_for_action(folder)

esm_cleanup.esm_cleanup.assert_question(question)

esm_cleanup.esm_cleanup.check_if_folder_exists(folder)

esm_cleanup.esm_cleanup.dir_size(somepath)

esm_cleanup.esm_cleanup.file_size(somepath)

esm_cleanup.esm_cleanup.format_size(total_size)

19.3. esm_cleanup package 113

ESM Tools r6.13 UserManual

esm_cleanup.esm_cleanup.inspect_size(thisfile)

esm_cleanup.esm_cleanup.is_experiment_folder(checkpath)

esm_cleanup.esm_cleanup.pick_experiment_folder(folder)

esm_cleanup.esm_cleanup.pick_subfolder(folder)

esm_cleanup.esm_cleanup.print_disclaimer()

esm_cleanup.esm_cleanup.print_folder_content(checkpath, saved_space)

esm_cleanup.esm_cleanup.read_in_yaml_file(filename)

esm_cleanup.esm_cleanup.remove_post_subfolders(folder, saved_space)

esm_cleanup.esm_cleanup.remove_run_subfolders(folder, saved_space)

esm_cleanup.esm_cleanup.remove_size_information(name_with_file)

esm_cleanup.esm_cleanup.remove_some_files(folder, saved_space)

esm_cleanup.esm_cleanup.remove_subfolder(folder, saved_space)

19.4 esm_database package

Top-level package for ESM Database.

19.4.1 Submodules

19.4.2 esm_database.cli module

A small wrapper that combines the shell interface and the Python interface

esm_database.cli.main()

esm_database.cli.parse_shargs()

The arg parser for interactive use

19.4.3 esm_database.esm_database module

class esm_database.esm_database.DisplayDatabase(tablename=None)
Bases: object

ask_column()

ask_dataset()

decision_maker()

edit_dataset()

output_writer()

114 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

remove_datasets()

select_stuff()

19.4.4 esm_database.getch module

esm_database.getch.get_one_of(testlist)

19.4.5 esm_database.location_database module

class esm_database.location_database.database_location(**kwargs)
Bases: Base

class_in

id

location

table_name

static topline()

esm_database.location_database.register(table_name, given_location, class_in)

19.5 esm_environment package

19.5.1 Submodules

19.5.2 esm_environment.esm_environment module

19.6 esm_master package

Top-level package for ESM Master.

19.6.1 Submodules

19.6.2 esm_master.cli module

19.6.3 esm_master.compile_info module

19.6.4 esm_master.database module

class esm_master.database.installation(**kwargs)
Bases: Base

action

19.5. esm_environment package 115

ESM Tools r6.13 UserManual

folder

id

static nicer_output(run)

setup_name

timestamp

static topline()

19.6.5 esm_master.database_actions module

esm_master.database_actions.database_entry(config, action, setup_name, base_dir)

19.6.6 esm_master.esm_master module

19.6.7 esm_master.general_stuff module

19.6.8 esm_master.software_package module

esm_master.software_package.replace_var(var, tag, value)

class esm_master.software_package.software_package(raw, setup_info, vcs, general, no_infos=False)
Bases: object

complete_targets(setup_info)

fill_in_infos(setup_info, vcs, general)

get_command_list(setup_info, vcs, general)

get_comp_type(setup_info)

get_coupling_changes(setup_info)

get_repo_info(setup_info, vcs)

get_subpackages(setup_info, vcs, general)

get_targets(setup_info, vcs)

output()

116 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

19.6.9 esm_master.task module

19.7 esm_motd package

19.7.1 Submodules

19.7.2 esm_motd.esm_motd module

19.8 esm_parser package

19.8.1 Submodules

19.8.2 esm_parser.esm_parser module

19.8.3 esm_parser.yaml_to_dict module

exception esm_parser.yaml_to_dict.EsmConfigFileError(fpath, yaml_error)
Bases: Exception

Exception for yaml file containing tabs or other syntax issues.

An exception used when yaml.load() throws a yaml.scanner.ScannerError. This error occurs mainly when there
are tabs inside a yaml file or when the syntax is incorrect. If tabs are found, this exception returns a user-friendly
message indicating where the tabs are located in the yaml file.

Parameters
fpath (str) – Path to the yaml file

esm_parser.yaml_to_dict.check_changes_duplicates(yamldict_all, fpath)
Checks for duplicates and conflicting _changes and add_:

1. Finds variables containing _changes (but excluding add_) and checks if they are compatible with the same
_changes inside the same file. If they are not compatible returns an error where the conflicting variable
paths are specified. More than one _changes type in a file are allowed but they need to be part of the same
_choose and not be accessible simultaneously in any situation.

2. Checks if there is any variable containing add_ in the main sections of a file and labels it as incompatible if
the same variable is found inside a choose_ block. add_<variable>``s are compatible as long
as they are inside ``choose_ blocks, but if you want to include something as a default, please just
do it inside the <variable>.

Warning: add_<variable>``s are not checked for incompatibility when they are
included inside ``choose_ blocks. Merging of these add_<variable>``s is done using
``deep_update, meaning that the merge is arbitrary (i.e. if two choose_ blocks are modifying the
same variable using add_, the final value would be decided arbitrarily). It is up to the developer/user
to make good use of add_``s inside ``choose_ blocks.

Parameters
• yamldict_all (dict) – Dictionary read from the yaml file

• fpath (str) – Path to the yaml file

19.7. esm_motd package 117

ESM Tools r6.13 UserManual

esm_parser.yaml_to_dict.check_duplicates(src)
Checks that there are no duplicates in a yaml file, and if there are returns an error stating which key is repeated
and in which file the duplication occurs.

Parameters
src (object) – Source file object

Raises
ConstructorError – If duplicated keys are found, returns an error

esm_parser.yaml_to_dict.check_for_empty_components(yaml_load, fpath)

esm_parser.yaml_to_dict.create_env_loader(tag='!ENV', loader=<class 'yaml.loader.SafeLoader'>)

esm_parser.yaml_to_dict.find_last_choose(var_path)
Locates the last choose_ on a string containing the path to a variable separated by “,”, and returns the path to
the choose_ (also separated by “,”) and the case that follows the choose_.

Parameters
var_path (str) – String containing the path to the last choose_ separated by “,”.

Returns
• path2choose (str) – Path to the last choose_.

• case (str) – Case after the choose.

esm_parser.yaml_to_dict.yaml_file_to_dict(filepath)
Given a yaml file, returns a corresponding dictionary.

If you do not give an extension, tries again after appending one. It raises an EsmConfigFileError exception if
yaml files contain tabs.

Parameters
filepath (str) – Where to get the YAML file from

Returns
A dictionary representation of the yaml file.

Return type
dict

Raises
• EsmConfigFileError – Raised when YAML file contains tabs or other syntax issues.

• FileNotFoundError – Raised when the YAML file cannot be found and all extensions have
been tried.

118 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

19.9 esm_plugin_manager package

19.9.1 Submodules

19.9.2 esm_plugin_manager.cli module

19.9.3 esm_plugin_manager.esm_plugin_manager module

19.10 esm_profile package

Top-level package for ESM Profile.

19.10.1 Submodules

19.10.2 esm_profile.esm_profile module

esm_profile.esm_profile.timing(f)

19.9. esm_plugin_manager package 119

ESM Tools r6.13 UserManual

120 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

19.11 esm_runscripts package

19.11.1 Submodules

19.11.2 esm_runscripts.assembler module

19.11.3 esm_runscripts.batch_system module

19.11.4 esm_runscripts.chunky_parts module

19.11.5 esm_runscripts.cli module

19.11.6 esm_runscripts.compute module

19.11.7 esm_runscripts.config_initialization module

19.11.8 esm_runscripts.coupler module

19.11.9 esm_runscripts.database module

19.11.10 esm_runscripts.database_actions module

19.11.11 esm_runscripts.dataprocess module

19.11.12 esm_runscripts.event_handlers module

19.11.13 esm_runscripts.filelists module

19.11.14 esm_runscripts.helpers module

19.11.15 esm_runscripts.inspect module

19.11.16 esm_runscripts.last_minute module

19.11.17 esm_runscripts.logfiles module

19.11.18 esm_runscripts.methods module

19.11.19 esm_runscripts.mpirun module

19.11.20 esm_runscripts.namelists module

19.11.21 esm_runscripts.oasis module

19.11.22 esm_runscripts.observe module

19.11.23 esm_runscripts.pbs module

19.11.24 esm_runscripts.postprocess module

19.11.25 esm_runscripts.prepare module

19.11.26 esm_runscripts.prepcompute module

19.11.27 esm_runscripts.prepexp module

19.11.28 esm_runscripts.prev_run module

19.11.29 esm_runscripts.resubmit module

19.11.30 esm_runscripts.sim_objects module

19.11.31 esm_runscripts.slurm module

19.11.32 esm_runscripts.tidy module

19.11.33 esm_runscripts.virtual_env_builder module

19.11.34 esm_runscripts.workflow module

19.11.35 esm_runscripts.yac module

19.12 esm_tests package

19.12.1 Submodules

19.12.2 esm_tests.cli module

19.12.3 esm_tests.info module

19.12.4 esm_tests.initialization module

19.12.5 esm_tests.output module

19.12.6 esm_tests.read_shipped_data module

19.12.7 esm_tests.repos module

19.12.8 esm_tests.test_utilities module

19.12.9 esm_tests.tests module

19.13 esm_tools package

19.13.1 ESM Tools (Package Documentation)

This package contains almost no code, but instead is where most of the YAML configurations files are distributed.
Default namelists are included as well as example runscripts. This section only documents the code contained in the

19.11. esm_runscripts package 121

ESM Tools r6.13 UserManual

module, please refer to the handbook for user documentation as well as API documentation for the various sub-modules
of the project.

Accessing Configuration

To access a particular configuration, you can use:

>>> from esm_tools import read_config_file
>>> ollie_config = read_config_file("machines/ollie")

Important note here is that the configuration file has not yet been parsed, so it’s just the dictionary representation of
the YAML.

esm_tools.EDITABLE_INSTALL = False

Shows if the installation is installed in editable mode or not.

Type
bool

esm_tools.caller_wrapper(func)

esm_tools.copy_config_folder(dest_path)

esm_tools.copy_namelist_folder(dest_path)

esm_tools.copy_runscript_folder(dest_path)

esm_tools.get_config_as_str(config)

esm_tools.get_config_filepath(config='')

esm_tools.get_namelist_filepath(namelist='')

esm_tools.get_runscript_filepath(runscript='')

esm_tools.list_config_dir(dirpath)

esm_tools.read_config_file(config)
Reads a configuration file, which should be seperated by “/”. For example, “machines/ollie” will retrieve the
(unparsed) configuration of the Ollie supercomputer.

Parameters
config (str) – Configuration to get, e.g. machines/ollie.yaml, or echam/echam. You may omit
the “.yaml” ending if you want, it will be appended automatically if not already there.

Returns
A dictionary representation of the config.

Return type
dict

esm_tools.read_namelist_file(nml)
Reads a namelist file from a path, seperated by “/”. Similar to read_config_file

Parameters
nml (str) – The namelist to load

Returns
A string of the namelist file

122 Chapter 19. ESM Tools Code Documentation

ESM Tools r6.13 UserManual

Return type
str

19.13.2 Submodules

19.13.3 esm_tools.cli module

19.14 esm_utilities package

Top-level package for ESM Utilities.

19.14.1 Submodules

19.14.2 esm_utilities.cli module

Console script for esm_utilities.

19.14.3 esm_utilities.esm_utilities module

Main module.

19.14.4 esm_utilities.utils module

esm_utilities.utils.check_valid_version(versionrange, version='')
Returns True if the version provided matches the condition of versionrange.

Parameters
• version (str) – String specifying the version number with the format X.Y.Z.

• versionrange (str) – Condition for the version range, expressed as a comparison operator
followed by a version number in the format X.Y.Z.

Returns
True, False – True if the condition is met, False if not.

Return type
bool

esm_utilities.utils.logfile_stats(logfile_to_read)

19.14. esm_utilities package 123

ESM Tools r6.13 UserManual

124 Chapter 19. ESM Tools Code Documentation

CHAPTER

TWENTY

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

20.1 Types of Contributions

20.1.1 Report Bugs

Report bugs at https://github.com/esm-tools/esm_tools/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

20.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

20.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

20.1.4 Write Documentation

ESM Tools could always use more documentation, whether as part of the official ESM Tools docs, in docstrings, or
even on the web in blog posts, articles, and such.

125

https://github.com/esm-tools/esm_tools/issues

ESM Tools r6.13 UserManual

20.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/esm-tools/esm_tools/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

20.2 Get Started!

Ready to contribute? Here’s how to set up esm-tools packages for local development (see Python Packages for a list of
available packages). Note that the procedure of contributing to the esm_tools package (see Contribution to esm_tools
Package) is different from the one to contribute to the other packages (Contribution to Other Packages).

20.2.1 Contribution to esm_tools Package

1. Fork the esm_tools repo on GitHub.

2. Clone your fork locally:

$ git clone https://github.com/esm-tools/esm_tools.git

(or whatever subproject you want to contribute to).

3. By default, git clone will give you the release branch of the project. You might want to consider checking
out the development branch, which might not always be as stable, but usually more up-to-date than the release
branch:

$ git checkout develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8:

$ flake8 esm_tools

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

126 Chapter 20. Contributing

https://github.com/esm-tools/esm_tools/issues

ESM Tools r6.13 UserManual

20.2.2 Contribution to Other Packages

1. Follow steps 1-4 in Contribution to esm_tools Package for the desired package, cloning your fork locally with:

$ git clone https://github.com/esm-tools/<PACKAGE>.git

2. Proceed to do a development install of the package in the package’s folder:

$ cd <package's_folder>
$ pip install -e .

3. From now on when binaries are called, they will refer to the source code you are working on, located in your local
package’s folder. For example, if you are editing the package esm_master located in ~/esm_master and you run
$ esm_master install-fesom-2.0 you’ll be using the edited files in ~/esm_master to install FESOM 2.0.

4. Follow steps 5-7 in Contribution to esm_tools Package.

Get Back to the Standard Distribution

Once finished with the contribution, you might want to get back to the standard non-editable mode version of the
package in the release branch. To do that please follow these steps:

1. Uninstall all ESM-Tools packages (Uninstall ESM-Tools). This will not remove the folder where you installed
the package in editable mode, just delete the links to that folder.

2. Navigate to the esm_tools folder and run the ./install.sh script.

3. Check that your package is now installed in the folder ~/.local/lib/python3.<version>/site-packages/
.

Note: If the package is still shows the path to the editable-mode folder, try running pip install
--use-feature=in-tree-build . from esm_tools.

20.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check https://travis-ci.com/dbarbi/
esm_tools/pull_requests and make sure that the tests pass for all supported Python versions.

20.3. Pull Request Guidelines 127

https://travis-ci.com/dbarbi/esm_tools/pull_requests
https://travis-ci.com/dbarbi/esm_tools/pull_requests

ESM Tools r6.13 UserManual

20.4 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

128 Chapter 20. Contributing

CHAPTER

TWENTYONE

CREDITS

21.1 Development Lead

• Dirk Barbi <dirk.barbi@awi.de>

• Paul Gierz <paul.gierz@awi.de>

• Nadine Wieters <nadine.wieters@awi.de>

• Miguel Andrés-Martínez <miguel.andres-martinez@awi.de>

• Deniz Ural <deniz.ural@awi.de>

21.2 Project Management

• Luisa Cristini <luisa.cristini@awi.de>

21.3 Contributors

• Sara Khosravi <sara.khosravi@awi.de>

• Fatemeh Chegini <fatemeh.chegini@mpimet.mpg.de>

• Joakim Kjellsson <jkjellsson@geomar.de>

• Sebastian Wahl <swahl@geomar.de>

• . . .

21.4 Beta Testers

• Tido Semmler <tido.semmler@awi.de>

• Christopher Danek <christopher.danek@awi.de>

• . . .

129

mailto:dirk.barbi@awi.de
mailto:paul.gierz@awi.de
mailto:nadine.wieters@awi.de
mailto:miguel.andres-martinez@awi.de
mailto:deniz.ural@awi.de
mailto:luisa.cristini@awi.de
mailto:sara.khosravi@awi.de
mailto:fatemeh.chegini@mpimet.mpg.de
mailto:jkjellsson@geomar.de
mailto:swahl@geomar.de
mailto:tido.semmler@awi.de
mailto:christopher.danek@awi.de

ESM Tools r6.13 UserManual

130 Chapter 21. Credits

CHAPTER

TWENTYTWO

INDICES AND TABLES

• genindex

• modindex

• search

131

ESM Tools r6.13 UserManual

132 Chapter 22. Indices and tables

PYTHON MODULE INDEX

e
esm_archiving, 95
esm_archiving.cli, 101
esm_archiving.config, 102
esm_archiving.esm_archiving, 103
esm_archiving.external, 99
esm_archiving.external.pypftp, 99
esm_calendar, 108
esm_calendar.esm_calendar, 108
esm_cleanup, 113
esm_cleanup.cli, 113
esm_cleanup.esm_cleanup, 113
esm_database, 114
esm_database.cli, 114
esm_database.esm_database, 114
esm_database.getch, 115
esm_database.location_database, 115
esm_master, 115
esm_master.database, 115
esm_master.database_actions, 116
esm_master.software_package, 116
esm_parser.yaml_to_dict, 117
esm_profile, 119
esm_profile.esm_profile, 119
esm_tools, 121
esm_utilities, 123
esm_utilities.cli, 123
esm_utilities.esm_utilities, 123
esm_utilities.utils, 123

133

ESM Tools r6.13 UserManual

134 Python Module Index

INDEX

Symbols
_calendar (esm_calendar.esm_calendar.Date attribute),

110

A
action (esm_master.database.installation attribute), 115
add() (esm_calendar.esm_calendar.Date method), 110
add_size_information() (in module

esm_cleanup.esm_cleanup), 113
archive_mistral() (in module esm_archiving), 95
archive_mistral() (in module

esm_archiving.esm_archiving), 103
ask_column() (esm_database.esm_database.DisplayDatabase

method), 114
ask_dataset() (esm_database.esm_database.DisplayDatabase

method), 114
ask_for_action() (in module

esm_cleanup.esm_cleanup), 113
assert_question() (in module

esm_cleanup.esm_cleanup), 113

C
Calendar (class in esm_calendar.esm_calendar), 108
caller_wrapper() (in module esm_tools), 122
check_changes_duplicates() (in module

esm_parser.yaml_to_dict), 117
check_duplicates() (in module

esm_parser.yaml_to_dict), 117
check_for_empty_components() (in module

esm_parser.yaml_to_dict), 118
check_if_folder_exists() (in module

esm_cleanup.esm_cleanup), 113
check_tar_lists() (in module esm_archiving), 95
check_tar_lists() (in module

esm_archiving.esm_archiving), 103
check_valid_version() (in module

esm_utilities.utils), 123
class_in (esm_database.location_database.database_location

attribute), 115
close() (esm_archiving.external.pypftp.Pftp method),

99

complete_targets() (esm_master.software_package.software_package
method), 116

copy_config_folder() (in module esm_tools), 122
copy_namelist_folder() (in module esm_tools), 122
copy_runscript_folder() (in module esm_tools), 122
create_env_loader() (in module

esm_parser.yaml_to_dict), 118
cwd() (esm_archiving.external.pypftp.Pftp method), 99

D
database_entry() (in module

esm_master.database_actions), 116
database_location (class in

esm_database.location_database), 115
Date (class in esm_calendar.esm_calendar), 110
date_range() (in module esm_calendar.esm_calendar),

112
Dateformat (class in esm_calendar.esm_calendar), 112
datesep (esm_calendar.esm_calendar.Dateformat

attribute), 112
DatestampLocationError, 103
day (esm_calendar.esm_calendar.Date attribute), 110
day_in_month() (esm_calendar.esm_calendar.Calendar

method), 109
day_in_year() (esm_calendar.esm_calendar.Calendar

method), 109
day_of_year() (esm_calendar.esm_calendar.Date

method), 111
decision_maker() (esm_database.esm_database.DisplayDatabase

method), 114
delete_original_data() (in module esm_archiving),

95
delete_original_data() (in module

esm_archiving.esm_archiving), 103
determine_datestamp_location() (in module

esm_archiving), 95
determine_datestamp_location() (in module

esm_archiving.esm_archiving), 104
determine_potential_datestamp_locations() (in

module esm_archiving), 96
determine_potential_datestamp_locations() (in

module esm_archiving.esm_archiving), 104

135

ESM Tools r6.13 UserManual

dir_size() (in module esm_cleanup.esm_cleanup), 113
directories() (esm_archiving.external.pypftp.Pftp

method), 99
DisplayDatabase (class in

esm_database.esm_database), 114
download() (esm_archiving.external.pypftp.Pftp static

method), 100
download() (in module esm_archiving.external.pypftp),

101
dtsep (esm_calendar.esm_calendar.Dateformat at-

tribute), 112

E
edit_dataset() (esm_database.esm_database.DisplayDatabase

method), 114
EDITABLE_INSTALL (in module esm_tools), 122
esm_archiving

module, 95
esm_archiving.cli

module, 101
esm_archiving.config

module, 102
esm_archiving.esm_archiving

module, 103
esm_archiving.external

module, 99
esm_archiving.external.pypftp

module, 99
esm_calendar

module, 108
esm_calendar.esm_calendar

module, 108
esm_cleanup

module, 113
esm_cleanup.cli

module, 113
esm_cleanup.esm_cleanup

module, 113
esm_database

module, 114
esm_database.cli

module, 114
esm_database.esm_database

module, 114
esm_database.getch

module, 115
esm_database.location_database

module, 115
esm_master

module, 115
esm_master.database

module, 115
esm_master.database_actions

module, 116

esm_master.software_package
module, 116

esm_parser.yaml_to_dict
module, 117

esm_profile
module, 119

esm_profile.esm_profile
module, 119

esm_tools
module, 121

esm_utilities
module, 123

esm_utilities.cli
module, 123

esm_utilities.esm_utilities
module, 123

esm_utilities.utils
module, 123

EsmConfigFileError, 117
evaluate_arguments() (in module esm_cleanup.cli),

113
exists() (esm_archiving.external.pypftp.Pftp method),

100

F
file_size() (in module esm_cleanup.esm_cleanup),

113
files() (esm_archiving.external.pypftp.Pftp method),

100
fill_in_infos() (esm_master.software_package.software_package

method), 116
find_indices_of() (in module esm_archiving), 96
find_indices_of() (in module

esm_archiving.esm_archiving), 104
find_last_choose() (in module

esm_parser.yaml_to_dict), 118
find_remaining_hours() (in module

esm_calendar.esm_calendar), 112
find_remaining_minutes() (in module

esm_calendar.esm_calendar), 113
folder (esm_master.database.installation attribute), 115
format() (esm_calendar.esm_calendar.Date method),

111
format_size() (in module esm_cleanup.esm_cleanup),

113
from_list() (esm_calendar.esm_calendar.Date class

method), 111
fromlist() (esm_calendar.esm_calendar.Date class

method), 111

G
get_command_list() (esm_master.software_package.software_package

method), 116

136 Index

ESM Tools r6.13 UserManual

get_comp_type() (esm_master.software_package.software_package
method), 116

get_config_as_str() (in module esm_tools), 122
get_config_filepath() (in module esm_tools), 122
get_coupling_changes()

(esm_master.software_package.software_package
method), 116

get_files_for_date_range() (in module
esm_archiving), 96

get_files_for_date_range() (in module
esm_archiving.esm_archiving), 104

get_list_from_filepattern() (in module
esm_archiving), 97

get_list_from_filepattern() (in module
esm_archiving.esm_archiving), 105

get_namelist_filepath() (in module esm_tools), 122
get_one_of() (in module esm_database.getch), 115
get_repo_info() (esm_master.software_package.software_package

method), 116
get_runscript_filepath() (in module esm_tools),

122
get_subpackages() (esm_master.software_package.software_package

method), 116
get_targets() (esm_master.software_package.software_package

method), 116
group_files() (in module esm_archiving), 97
group_files() (in module

esm_archiving.esm_archiving), 105
group_indexes() (in module esm_archiving), 97
group_indexes() (in module

esm_archiving.esm_archiving), 105

H
HOST (esm_archiving.external.pypftp.Pftp attribute), 99
hour (esm_calendar.esm_calendar.Date attribute), 110

I
id (esm_database.location_database.database_location

attribute), 115
id (esm_master.database.installation attribute), 116
inspect_size() (in module

esm_cleanup.esm_cleanup), 113
installation (class in esm_master.database), 115
is_connected() (esm_archiving.external.pypftp.Pftp

method), 100
is_experiment_folder() (in module

esm_cleanup.esm_cleanup), 114
isdir() (esm_archiving.external.pypftp.Pftp method),

100
isfile() (esm_archiving.external.pypftp.Pftp method),

100
isleapyear() (esm_calendar.esm_calendar.Calendar

method), 109

islink() (esm_archiving.external.pypftp.Pftp method),
100

L
list_config_dir() (in module esm_tools), 122
listdir() (esm_archiving.external.pypftp.Pftp

method), 100
listing() (esm_archiving.external.pypftp.Pftp

method), 100
listing2() (esm_archiving.external.pypftp.Pftp

method), 100
load_config() (in module esm_archiving.config), 103
location (esm_database.location_database.database_location

attribute), 115
log_tarfile_contents() (in module esm_archiving),

97
log_tarfile_contents() (in module

esm_archiving.esm_archiving), 106
logfile_stats() (in module esm_utilities.utils), 123

M
main() (in module esm_cleanup.cli), 113
main() (in module esm_database.cli), 114
main_loop() (in module esm_cleanup.cli), 113
makedirs() (esm_archiving.external.pypftp.Pftp

method), 100
makesense() (esm_calendar.esm_calendar.Date

method), 112
minute (esm_calendar.esm_calendar.Date attribute),

110
mkdir() (esm_archiving.external.pypftp.Pftp method),

100
mlsd() (esm_archiving.external.pypftp.Pftp method),

100
module

esm_archiving, 95
esm_archiving.cli, 101
esm_archiving.config, 102
esm_archiving.esm_archiving, 103
esm_archiving.external, 99
esm_archiving.external.pypftp, 99
esm_calendar, 108
esm_calendar.esm_calendar, 108
esm_cleanup, 113
esm_cleanup.cli, 113
esm_cleanup.esm_cleanup, 113
esm_database, 114
esm_database.cli, 114
esm_database.esm_database, 114
esm_database.getch, 115
esm_database.location_database, 115
esm_master, 115
esm_master.database, 115
esm_master.database_actions, 116

Index 137

ESM Tools r6.13 UserManual

esm_master.software_package, 116
esm_parser.yaml_to_dict, 117
esm_profile, 119
esm_profile.esm_profile, 119
esm_tools, 121
esm_utilities, 123
esm_utilities.cli, 123
esm_utilities.esm_utilities, 123
esm_utilities.utils, 123

month (esm_calendar.esm_calendar.Date attribute), 110
monthnames (esm_calendar.esm_calendar.Calendar at-

tribute), 109

N
nicer_output() (esm_master.database.installation

static method), 116

O
output() (esm_calendar.esm_calendar.Date method),

112
output() (esm_master.software_package.software_package

method), 116
output_writer() (esm_database.esm_database.DisplayDatabase

method), 114

P
pack_tarfile() (in module esm_archiving), 98
pack_tarfile() (in module

esm_archiving.esm_archiving), 106
parse_shargs() (in module esm_database.cli), 114
Pftp (class in esm_archiving.external.pypftp), 99
pick_experiment_folder() (in module

esm_cleanup.esm_cleanup), 114
pick_subfolder() (in module

esm_cleanup.esm_cleanup), 114
PORT (esm_archiving.external.pypftp.Pftp attribute), 99
print_disclaimer() (in module

esm_cleanup.esm_cleanup), 114
print_folder_content() (in module

esm_cleanup.esm_cleanup), 114
purify_expid_in() (in module esm_archiving), 98
purify_expid_in() (in module

esm_archiving.esm_archiving), 106
pwd() (esm_archiving.external.pypftp.Pftp method), 100

Q
query_yes_no() (in module

esm_archiving.esm_archiving), 107
quit() (esm_archiving.external.pypftp.Pftp method),

100

R
read_config_file() (in module esm_tools), 122

read_in_yaml_file() (in module
esm_cleanup.esm_cleanup), 114

read_namelist_file() (in module esm_tools), 122
reconnect() (esm_archiving.external.pypftp.Pftp

method), 100
register() (in module

esm_database.location_database), 115
remove() (esm_archiving.external.pypftp.Pftp method),

100
remove_datasets() (esm_database.esm_database.DisplayDatabase

method), 114
remove_post_subfolders() (in module

esm_cleanup.esm_cleanup), 114
remove_run_subfolders() (in module

esm_cleanup.esm_cleanup), 114
remove_size_information() (in module

esm_cleanup.esm_cleanup), 114
remove_some_files() (in module

esm_cleanup.esm_cleanup), 114
remove_subfolder() (in module

esm_cleanup.esm_cleanup), 114
removedirs() (esm_archiving.external.pypftp.Pftp

method), 100
rename() (esm_archiving.external.pypftp.Pftp method),

100
replace_var() (in module

esm_master.software_package), 116
rmdir() (esm_archiving.external.pypftp.Pftp method),

100
run_command() (in module

esm_archiving.esm_archiving), 107

S
sday (esm_calendar.esm_calendar.Date property), 112
sdoy (esm_calendar.esm_calendar.Date property), 112
second (esm_calendar.esm_calendar.Date attribute),

110
select_stuff() (esm_database.esm_database.DisplayDatabase

method), 115
setup_name (esm_master.database.installation at-

tribute), 116
shour (esm_calendar.esm_calendar.Date property), 112
size() (esm_archiving.external.pypftp.Pftp method),

100
sminute (esm_calendar.esm_calendar.Date property),

112
smonth (esm_calendar.esm_calendar.Date property),

112
software_package (class in

esm_master.software_package), 116
sort_files_to_tarlists() (in module

esm_archiving), 98
sort_files_to_tarlists() (in module

esm_archiving.esm_archiving), 107

138 Index

ESM Tools r6.13 UserManual

split_list_due_to_size_limit() (in module
esm_archiving), 98

split_list_due_to_size_limit() (in module
esm_archiving.esm_archiving), 107

ssecond (esm_calendar.esm_calendar.Date property),
112

stamp_filepattern() (in module esm_archiving), 98
stamp_filepattern() (in module

esm_archiving.esm_archiving), 107
stamp_files() (in module esm_archiving), 99
stamp_files() (in module

esm_archiving.esm_archiving), 107
stat() (esm_archiving.external.pypftp.Pftp method),

100
sub_date() (esm_calendar.esm_calendar.Date method),

112
sub_tuple() (esm_calendar.esm_calendar.Date

method), 112
sum_tar_lists() (in module esm_archiving), 99
sum_tar_lists() (in module

esm_archiving.esm_archiving), 108
sum_tar_lists_human_readable() (in module

esm_archiving), 99
sum_tar_lists_human_readable() (in module

esm_archiving.esm_archiving), 108
syear (esm_calendar.esm_calendar.Date property), 112

T
table_name (esm_database.location_database.database_location

attribute), 115
time_between() (esm_calendar.esm_calendar.Date

method), 112
timesep (esm_calendar.esm_calendar.Dateformat

attribute), 112
timestamp (esm_master.database.installation attribute),

116
timeunits (esm_calendar.esm_calendar.Calendar at-

tribute), 108, 110
timing() (in module esm_profile.esm_profile), 119
topline() (esm_database.location_database.database_location

static method), 115
topline() (esm_master.database.installation static

method), 116

U
upload() (esm_archiving.external.pypftp.Pftp static

method), 101
upload() (in module esm_archiving.external.pypftp),

101

W
walk() (esm_archiving.external.pypftp.Pftp method),

101

walk_for_directories()
(esm_archiving.external.pypftp.Pftp method),
101

walk_for_files() (esm_archiving.external.pypftp.Pftp
method), 101

write_config_yaml() (in module
esm_archiving.config), 103

Y
yaml_file_to_dict() (in module

esm_parser.yaml_to_dict), 118
year (esm_calendar.esm_calendar.Date attribute), 110

Index 139

	Introduction
	Ten Steps to a Running Model
	Installation
	Downloading
	Installing in an encapuslated environment
	Accessing components in DKRZ server

	ESM Tools
	Before you continue
	Installing
	Upgrade ESM-Tools
	Uninstall ESM-Tools

	Transitioning from the Shell Version
	ESM-Master
	ESM-Environment
	ESM-Runscripts
	Functions –> Configs + Python Packages
	Namelists

	YAML File Syntax
	What Is YAML?
	YAML-Specific Syntax

	ESM-Tools Extended YAML Syntax
	Variable Calls
	Switches (choose_)
	Append to an Existing List (add_)
	Remove Elements from a List/Dictionary (remove_)
	Math and Calendar Operations
	Arithmetic Operations
	Extraction of Date Components from a Date

	Globbing
	Environment and Namelist Changes (_changes)
	Environment Changes
	Changing Namelists
	Coupling changes

	List Loops
	File Dictionaries
	File Dictionary Types
	File Dictionary Options
	File movements

	Accessing Variables from the Previous Run (prev_run)
	Error-handling and warning syntax

	YAML File Hierarchy
	Hierarchy of YAML configuration files

	ESM-Tools Variables
	Tool-Specific Elements/Variables
	Installation variables
	Runtime variables
	Calendar variables
	Coupling variables
	Other variables

	Supported Models
	AMIP
	DEBM
	ECHAM
	ESM_INTERFACE
	FESOM
	FESOM_MESH_PART
	HDMODEL
	ICON
	JSBACH
	MPIOM
	NEMO
	NEMOBASEMODEL
	OASIS3MCT
	OpenIFS
	PISM
	RECOM
	RNFMAP
	SAMPLE
	SCOPE
	TUX
	VILMA
	XIOS
	YAC
	YAXT

	ESM Master
	Usage: esm_master
	Configuring esm-master for Compile-Time Overrides

	ESM-Versions
	Usage
	Getting ESM-Versions

	ESM Runscripts
	Usage
	Arguments
	Running a Model/Setup
	Job Phases
	Running only part of a job
	Experiment Directory Structure
	Cleanup of run_ directories
	Debugging an Experiment
	Setting the file movement method for filetypes in the runscript

	ESM Runscripts - Using the Workflow Manager
	Introduction
	Subjobs of a normal run
	Keywords available for defining additional data processing subjobs
	Example 1: Adding an additional postprocessing subjob
	Example 2: Adding an additional preprocessing subjob
	Example 3: Adding a iterative coupling job

	ESM Environment
	Environment variables
	Modification of the environment through the model/setup files
	Coupled setup environment control
	Component-by-component
	General environment for setups

	ESM MOTD
	Cookbook
	Change/Add Flags to the sbatch Call
	Example

	Applying a temporary disturbance to ECHAM to overcome numeric instability (lookup table overflows of various kinds)
	Example
	See also

	Changing Namelist Entries from the Runscript
	Example
	Practical Usage
	Unusual Namelists
	See also

	Heterogeneous Parallelization Run (MPI/OpenMP)
	Example
	See also

	How to setup runscripts for different kind of experiments
	See also

	Implement a New Model
	See also

	Implement a New Coupled Setup
	Example
	See also

	Include a New Forcing/Input File
	Source Path Already Defined in a Config File
	Example

	Modify the Source of a File
	Copy the file in the work folder and/or rename it
	Example

	See also

	Exclude a Forcing/Input File
	Example
	See also

	Using your own namelist
	Example
	See also

	How to branch-off FESOM from old spinup restart files
	See also

	Frequently Asked Questions
	Installation
	ESM Runscripts
	ESM Master
	Frequent Errors

	Python Packages
	esm_tools.git
	esm_master.git
	esm_runscripts.git
	esm_parser.git
	esm_calendar.git

	ESM Tools Code Documentation
	esm_archiving package
	Subpackages
	esm_archiving.external package
	Submodules
	esm_archiving.external.pypftp module

	Submodules
	esm_archiving.cli module
	Creating tarballs
	Uploading tarballs

	esm_archiving.config module
	Generating a configuration

	esm_archiving.esm_archiving module

	esm_calendar package
	Submodules
	esm_calendar.esm_calendar module

	esm_cleanup package
	Submodules
	esm_cleanup.cli module
	esm_cleanup.esm_cleanup module

	esm_database package
	Submodules
	esm_database.cli module
	esm_database.esm_database module
	esm_database.getch module
	esm_database.location_database module

	esm_environment package
	Submodules
	esm_environment.esm_environment module

	esm_master package
	Submodules
	esm_master.cli module
	esm_master.compile_info module
	esm_master.database module
	esm_master.database_actions module
	esm_master.esm_master module
	esm_master.general_stuff module
	esm_master.software_package module
	esm_master.task module

	esm_motd package
	Submodules
	esm_motd.esm_motd module

	esm_parser package
	Submodules
	esm_parser.esm_parser module
	esm_parser.yaml_to_dict module

	esm_plugin_manager package
	Submodules
	esm_plugin_manager.cli module
	esm_plugin_manager.esm_plugin_manager module

	esm_profile package
	Submodules
	esm_profile.esm_profile module

	esm_runscripts package
	Submodules
	esm_runscripts.assembler module
	esm_runscripts.batch_system module
	esm_runscripts.chunky_parts module
	esm_runscripts.cli module
	esm_runscripts.compute module
	esm_runscripts.config_initialization module
	esm_runscripts.coupler module
	esm_runscripts.database module
	esm_runscripts.database_actions module
	esm_runscripts.dataprocess module
	esm_runscripts.event_handlers module
	esm_runscripts.filelists module
	esm_runscripts.helpers module
	esm_runscripts.inspect module
	esm_runscripts.last_minute module
	esm_runscripts.logfiles module
	esm_runscripts.methods module
	esm_runscripts.mpirun module
	esm_runscripts.namelists module
	esm_runscripts.oasis module
	esm_runscripts.observe module
	esm_runscripts.pbs module
	esm_runscripts.postprocess module
	esm_runscripts.prepare module
	esm_runscripts.prepcompute module
	esm_runscripts.prepexp module
	esm_runscripts.prev_run module
	esm_runscripts.resubmit module
	esm_runscripts.sim_objects module
	esm_runscripts.slurm module
	esm_runscripts.tidy module
	esm_runscripts.virtual_env_builder module
	esm_runscripts.workflow module
	esm_runscripts.yac module

	esm_tests package
	Submodules
	esm_tests.cli module
	esm_tests.info module
	esm_tests.initialization module
	esm_tests.output module
	esm_tests.read_shipped_data module
	esm_tests.repos module
	esm_tests.test_utilities module
	esm_tests.tests module

	esm_tools package
	ESM Tools (Package Documentation)
	Accessing Configuration

	Submodules
	esm_tools.cli module

	esm_utilities package
	Submodules
	esm_utilities.cli module
	esm_utilities.esm_utilities module
	esm_utilities.utils module

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Contribution to esm_tools Package
	Contribution to Other Packages
	Get Back to the Standard Distribution

	Pull Request Guidelines
	Deploying

	Credits
	Development Lead
	Project Management
	Contributors
	Beta Testers

	Indices and tables
	Python Module Index
	Index

